#region CPL License /* Nuclex Framework Copyright (C) 2002-2009 Nuclex Development Labs This library is free software; you can redistribute it and/or modify it under the terms of the IBM Common Public License as published by the IBM Corporation; either version 1.0 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the IBM Common Public License for more details. You should have received a copy of the IBM Common Public License along with this library */ #endregion using System; using Microsoft.Xna.Framework; namespace Nuclex.Geometry.Areas.PointGenerators { /// Point generator for triangle areas public static class Triangle3PointGenerator { /// Returns a random point on the perimeter of a triangle /// Random number generator that will be used /// Location of the triangle's first corner /// Location of the triangle's second corner /// Location of the triangle's third corner /// A random point on the triangle's perimeter public static Vector3 GenerateRandomPointOnPerimeter( IRandom randomNumberGenerator, Vector3 a, Vector3 b, Vector3 c ) { Vector3 ab = (b - a); Vector3 bc = (c - b); Vector3 ca = (a - c); float lengthAB = ab.LengthSquared(); float lengthBC = bc.LengthSquared(); float lengthCA = ca.LengthSquared(); float totalLength = lengthAB + lengthBC + lengthCA; float position = (float)randomNumberGenerator.NextDouble() * totalLength; if(position < lengthAB) return a + ab * (position / lengthAB); position -= lengthAB; if(position < lengthBC) return b + bc * (position / lengthBC); position -= lengthBC; return c + ca * (position / lengthCA); } /// Returns a random point within a triangle /// Random number generator that will be used /// Location of the triangle's first corner /// Location of the triangle's second corner /// Location of the triangle's third corner /// A random point within the triangle public static Vector3 GenerateRandomPointWithin( IRandom randomNumberGenerator, Vector3 a, Vector3 b, Vector3 c ) { // Treat triangle as the half of a parallelogram. Then calculate a // random point along the width and the height. // // Width // ----------- // a___________ // / / / // / / / Height // /__________/ / // b c // // Now split the parallelogram along a-c and mirror any points that // end up on the other side. // // xx = rand(1.0) // yy = rand(1.0) // // if((xx + yy) > 1.0) { // xx = 1.0 - xx; // yy = 1.0 - yy; // } // // Then calculate the absolute coordinates of the point // // a. // / . // / . // /________. // b c // // x = b.x + xx * (c.x - b.x) + (b.x - a.x) * yy // y = yy * (a.y - b.y) // This might be using the same approach, not sure though :) // http://vcg.isti.cnr.it/activities/geometryegraphics/pointintetraedro.html // Calculate random barycentric coordinates inside the unit // triangle (0,0)-(1,0)-(0,1). First, we take random x and y coordinates in // a box with side lengths ab, ac float x = (float)randomNumberGenerator.NextDouble(); float y = (float)randomNumberGenerator.NextDouble(); // The triangle covers exactly half of the box our random points are distributed // in. Instead of rejecting these coordinates, we mirror the other half of the box // back into the triangle (on the bc edge of the triangle) if(x + y > 1.0f) { x = 1.0f - x; y = 1.0f - y; } float z = 1.0f - x - y; // Convert the barycentric coordinates back into cartesian coordinates return (a * x) + (b * y) + (c * z); } } } // namespace Nuclex.Geometry.Volumes.Generators