// Copyright 2018 Ulf Adams // // The contents of this file may be used under the terms of the Apache License, // Version 2.0. // // (See accompanying file LICENSE-Apache or copy at // http://www.apache.org/licenses/LICENSE-2.0) // // Alternatively, the contents of this file may be used under the terms of // the Boost Software License, Version 1.0. // (See accompanying file LICENSE-Boost or copy at // https://www.boost.org/LICENSE_1_0.txt) // // Unless required by applicable law or agreed to in writing, this software // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. // Runtime compiler options: // -DRYU_DEBUG Generate verbose debugging output to stdout. // // -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower, // depending on your compiler. // // -DRYU_AVOID_UINT128 Avoid using uint128_t. Slower, depending on your compiler. #include "ryu.h" #include #include #include #include #include #ifdef RYU_DEBUG #include #include #endif #include "common.h" #include "digit_table.h" #include "d2fixed_full_table.h" #include "d2s_intrinsics.h" #define DOUBLE_MANTISSA_BITS 52 #define DOUBLE_EXPONENT_BITS 11 #define DOUBLE_BIAS 1023 #define POW10_ADDITIONAL_BITS 120 #if defined(HAS_UINT128) static inline uint128_t umul256(const uint128_t a, const uint64_t bHi, const uint64_t bLo, uint128_t* const productHi) { const uint64_t aLo = (uint64_t)a; const uint64_t aHi = (uint64_t)(a >> 64); const uint128_t b00 = (uint128_t)aLo * bLo; const uint128_t b01 = (uint128_t)aLo * bHi; const uint128_t b10 = (uint128_t)aHi * bLo; const uint128_t b11 = (uint128_t)aHi * bHi; const uint64_t b00Lo = (uint64_t)b00; const uint64_t b00Hi = (uint64_t)(b00 >> 64); const uint128_t mid1 = b10 + b00Hi; const uint64_t mid1Lo = (uint64_t)(mid1); const uint64_t mid1Hi = (uint64_t)(mid1 >> 64); const uint128_t mid2 = b01 + mid1Lo; const uint64_t mid2Lo = (uint64_t)(mid2); const uint64_t mid2Hi = (uint64_t)(mid2 >> 64); const uint128_t pHi = b11 + mid1Hi + mid2Hi; const uint128_t pLo = ((uint128_t)mid2Lo << 64) | b00Lo; *productHi = pHi; return pLo; } // Returns the high 128 bits of the 256-bit product of a and b. static inline uint128_t umul256_hi(const uint128_t a, const uint64_t bHi, const uint64_t bLo) { // Reuse the umul256 implementation. // Optimizers will likely eliminate the instructions used to compute the // low part of the product. uint128_t hi; umul256(a, bHi, bLo, &hi); return hi; } // Unfortunately, gcc/clang do not automatically turn a 128-bit integer division // into a multiplication, so we have to do it manually. static inline uint32_t uint128_mod1e9(const uint128_t v) { // After multiplying, we're going to shift right by 29, then truncate to uint32_t. // This means that we need only 29 + 32 = 61 bits, so we can truncate to uint64_t before shifting. const uint64_t multiplied = (uint64_t) umul256_hi(v, 0x89705F4136B4A597u, 0x31680A88F8953031u); // For uint32_t truncation, see the mod1e9() comment in d2s_intrinsics.h. const uint32_t shifted = (uint32_t) (multiplied >> 29); return ((uint32_t) v) - 1000000000 * shifted; } // Best case: use 128-bit type. static inline uint32_t mulShift_mod1e9(const uint64_t m, const uint64_t* const mul, const int32_t j) { const uint128_t b0 = ((uint128_t) m) * mul[0]; // 0 const uint128_t b1 = ((uint128_t) m) * mul[1]; // 64 const uint128_t b2 = ((uint128_t) m) * mul[2]; // 128 #ifdef RYU_DEBUG if (j < 128 || j > 180) { printf("%d\n", j); } #endif assert(j >= 128); assert(j <= 180); // j: [128, 256) const uint128_t mid = b1 + (uint64_t) (b0 >> 64); // 64 const uint128_t s1 = b2 + (uint64_t) (mid >> 64); // 128 return uint128_mod1e9(s1 >> (j - 128)); } #else // HAS_UINT128 #if defined(HAS_64_BIT_INTRINSICS) // Returns the low 64 bits of the high 128 bits of the 256-bit product of a and b. static inline uint64_t umul256_hi128_lo64( const uint64_t aHi, const uint64_t aLo, const uint64_t bHi, const uint64_t bLo) { uint64_t b00Hi; const uint64_t b00Lo = umul128(aLo, bLo, &b00Hi); uint64_t b01Hi; const uint64_t b01Lo = umul128(aLo, bHi, &b01Hi); uint64_t b10Hi; const uint64_t b10Lo = umul128(aHi, bLo, &b10Hi); uint64_t b11Hi; const uint64_t b11Lo = umul128(aHi, bHi, &b11Hi); (void) b00Lo; // unused (void) b11Hi; // unused const uint64_t temp1Lo = b10Lo + b00Hi; const uint64_t temp1Hi = b10Hi + (temp1Lo < b10Lo); const uint64_t temp2Lo = b01Lo + temp1Lo; const uint64_t temp2Hi = b01Hi + (temp2Lo < b01Lo); return b11Lo + temp1Hi + temp2Hi; } static inline uint32_t uint128_mod1e9(const uint64_t vHi, const uint64_t vLo) { // After multiplying, we're going to shift right by 29, then truncate to uint32_t. // This means that we need only 29 + 32 = 61 bits, so we can truncate to uint64_t before shifting. const uint64_t multiplied = umul256_hi128_lo64(vHi, vLo, 0x89705F4136B4A597u, 0x31680A88F8953031u); // For uint32_t truncation, see the mod1e9() comment in d2s_intrinsics.h. const uint32_t shifted = (uint32_t) (multiplied >> 29); return ((uint32_t) vLo) - 1000000000 * shifted; } #endif // HAS_64_BIT_INTRINSICS static inline uint32_t mulShift_mod1e9(const uint64_t m, const uint64_t* const mul, const int32_t j) { uint64_t high0; // 64 const uint64_t low0 = umul128(m, mul[0], &high0); // 0 uint64_t high1; // 128 const uint64_t low1 = umul128(m, mul[1], &high1); // 64 uint64_t high2; // 192 const uint64_t low2 = umul128(m, mul[2], &high2); // 128 const uint64_t s0low = low0; // 0 (void) s0low; // unused const uint64_t s0high = low1 + high0; // 64 const uint32_t c1 = s0high < low1; const uint64_t s1low = low2 + high1 + c1; // 128 const uint32_t c2 = s1low < low2; // high1 + c1 can't overflow, so compare against low2 const uint64_t s1high = high2 + c2; // 192 #ifdef RYU_DEBUG if (j < 128 || j > 180) { printf("%d\n", j); } #endif assert(j >= 128); assert(j <= 180); #if defined(HAS_64_BIT_INTRINSICS) const uint32_t dist = (uint32_t) (j - 128); // dist: [0, 52] const uint64_t shiftedhigh = s1high >> dist; const uint64_t shiftedlow = shiftright128(s1low, s1high, dist); return uint128_mod1e9(shiftedhigh, shiftedlow); #else // HAS_64_BIT_INTRINSICS if (j < 160) { // j: [128, 160) const uint64_t r0 = mod1e9(s1high); const uint64_t r1 = mod1e9((r0 << 32) | (s1low >> 32)); const uint64_t r2 = ((r1 << 32) | (s1low & 0xffffffff)); return mod1e9(r2 >> (j - 128)); } else { // j: [160, 192) const uint64_t r0 = mod1e9(s1high); const uint64_t r1 = ((r0 << 32) | (s1low >> 32)); return mod1e9(r1 >> (j - 160)); } #endif // HAS_64_BIT_INTRINSICS } #endif // HAS_UINT128 static inline void append_n_digits(const uint32_t olength, uint32_t digits, char* const result) { #ifdef RYU_DEBUG printf("DIGITS=%u\n", digits); #endif uint32_t i = 0; while (digits >= 10000) { #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217 const uint32_t c = digits - 10000 * (digits / 10000); #else const uint32_t c = digits % 10000; #endif digits /= 10000; const uint32_t c0 = (c % 100) << 1; const uint32_t c1 = (c / 100) << 1; memcpy(result + olength - i - 2, DIGIT_TABLE + c0, 2); memcpy(result + olength - i - 4, DIGIT_TABLE + c1, 2); i += 4; } if (digits >= 100) { const uint32_t c = (digits % 100) << 1; digits /= 100; memcpy(result + olength - i - 2, DIGIT_TABLE + c, 2); i += 2; } if (digits >= 10) { const uint32_t c = digits << 1; memcpy(result + olength - i - 2, DIGIT_TABLE + c, 2); } else { result[0] = (char) ('0' + digits); } } static inline void append_d_digits(const uint32_t olength, uint32_t digits, char* const result) { #ifdef RYU_DEBUG printf("DIGITS=%u\n", digits); #endif uint32_t i = 0; while (digits >= 10000) { #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217 const uint32_t c = digits - 10000 * (digits / 10000); #else const uint32_t c = digits % 10000; #endif digits /= 10000; const uint32_t c0 = (c % 100) << 1; const uint32_t c1 = (c / 100) << 1; memcpy(result + olength + 1 - i - 2, DIGIT_TABLE + c0, 2); memcpy(result + olength + 1 - i - 4, DIGIT_TABLE + c1, 2); i += 4; } if (digits >= 100) { const uint32_t c = (digits % 100) << 1; digits /= 100; memcpy(result + olength + 1 - i - 2, DIGIT_TABLE + c, 2); i += 2; } if (digits >= 10) { const uint32_t c = digits << 1; result[2] = DIGIT_TABLE[c + 1]; result[1] = '.'; result[0] = DIGIT_TABLE[c]; } else { result[1] = '.'; result[0] = (char) ('0' + digits); } } static inline void append_c_digits(const uint32_t count, uint32_t digits, char* const result) { #ifdef RYU_DEBUG printf("DIGITS=%u\n", digits); #endif uint32_t i = 0; for (; i < count - 1; i += 2) { const uint32_t c = (digits % 100) << 1; digits /= 100; memcpy(result + count - i - 2, DIGIT_TABLE + c, 2); } if (i < count) { const char c = (char) ('0' + (digits % 10)); result[count - i - 1] = c; } } static inline void append_nine_digits(uint32_t digits, char* const result) { #ifdef RYU_DEBUG printf("DIGITS=%u\n", digits); #endif if (digits == 0) { memset(result, '0', 9); return; } for (uint32_t i = 0; i < 5; i += 4) { #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217 const uint32_t c = digits - 10000 * (digits / 10000); #else const uint32_t c = digits % 10000; #endif digits /= 10000; const uint32_t c0 = (c % 100) << 1; const uint32_t c1 = (c / 100) << 1; memcpy(result + 7 - i, DIGIT_TABLE + c0, 2); memcpy(result + 5 - i, DIGIT_TABLE + c1, 2); } result[0] = (char) ('0' + digits); } static inline uint32_t indexForExponent(const uint32_t e) { return (e + 15) / 16; } static inline uint32_t pow10BitsForIndex(const uint32_t idx) { return 16 * idx + POW10_ADDITIONAL_BITS; } static inline uint32_t lengthForIndex(const uint32_t idx) { // +1 for ceil, +16 for mantissa, +8 to round up when dividing by 9 return (log10Pow2(16 * (int32_t) idx) + 1 + 16 + 8) / 9; } static inline int copy_special_str_printf(char* const result, const bool sign, const uint64_t mantissa) { #if defined(_MSC_VER) // TODO: Check that -nan is expected output on Windows. if (sign) { result[0] = '-'; } if (mantissa) { if (mantissa < (1ull << (DOUBLE_MANTISSA_BITS - 1))) { memcpy(result + sign, "nan(snan)", 9); return sign + 9; } memcpy(result + sign, "nan", 3); return sign + 3; } #else if (mantissa) { memcpy(result, "nan", 3); return 3; } if (sign) { result[0] = '-'; } #endif memcpy(result + sign, "Infinity", 8); return sign + 8; } int d2fixed_buffered_n(double d, uint32_t precision, char* result) { const uint64_t bits = double_to_bits(d); #ifdef RYU_DEBUG printf("IN="); for (int32_t bit = 63; bit >= 0; --bit) { printf("%d", (int) ((bits >> bit) & 1)); } printf("\n"); #endif // Decode bits into sign, mantissa, and exponent. const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0; const uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1); const uint32_t ieeeExponent = (uint32_t) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1)); // Case distinction; exit early for the easy cases. if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u)) { return copy_special_str_printf(result, ieeeSign, ieeeMantissa); } if (ieeeExponent == 0 && ieeeMantissa == 0) { int index = 0; if (ieeeSign) { result[index++] = '-'; } result[index++] = '0'; if (precision > 0) { result[index++] = '.'; memset(result + index, '0', precision); index += precision; } return index; } int32_t e2; uint64_t m2; if (ieeeExponent == 0) { e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS; m2 = ieeeMantissa; } else { e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS; m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa; } #ifdef RYU_DEBUG printf("-> %" PRIu64 " * 2^%d\n", m2, e2); #endif int index = 0; bool nonzero = false; if (ieeeSign) { result[index++] = '-'; } if (e2 >= -52) { const uint32_t idx = e2 < 0 ? 0 : indexForExponent((uint32_t) e2); const uint32_t p10bits = pow10BitsForIndex(idx); const int32_t len = (int32_t) lengthForIndex(idx); #ifdef RYU_DEBUG printf("idx=%u\n", idx); printf("len=%d\n", len); #endif for (int32_t i = len - 1; i >= 0; --i) { const uint32_t j = p10bits - e2; // Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is // a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers. const uint32_t digits = mulShift_mod1e9(m2 << 8, POW10_SPLIT[POW10_OFFSET[idx] + i], (int32_t) (j + 8)); if (nonzero) { append_nine_digits(digits, result + index); index += 9; } else if (digits != 0) { const uint32_t olength = decimalLength9(digits); append_n_digits(olength, digits, result + index); index += olength; nonzero = true; } } } if (!nonzero) { result[index++] = '0'; } if (precision > 0) { result[index++] = '.'; } #ifdef RYU_DEBUG printf("e2=%d\n", e2); #endif if (e2 < 0) { const int32_t idx = -e2 / 16; #ifdef RYU_DEBUG printf("idx=%d\n", idx); #endif const uint32_t blocks = precision / 9 + 1; // 0 = don't round up; 1 = round up unconditionally; 2 = round up if odd. int roundUp = 0; uint32_t i = 0; if (blocks <= MIN_BLOCK_2[idx]) { i = blocks; memset(result + index, '0', precision); index += precision; } else if (i < MIN_BLOCK_2[idx]) { i = MIN_BLOCK_2[idx]; memset(result + index, '0', 9 * i); index += 9 * i; } for (; i < blocks; ++i) { const int32_t j = ADDITIONAL_BITS_2 + (-e2 - 16 * idx); const uint32_t p = POW10_OFFSET_2[idx] + i - MIN_BLOCK_2[idx]; if (p >= POW10_OFFSET_2[idx + 1]) { // If the remaining digits are all 0, then we might as well use memset. // No rounding required in this case. const uint32_t fill = precision - 9 * i; memset(result + index, '0', fill); index += fill; break; } // Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is // a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers. uint32_t digits = mulShift_mod1e9(m2 << 8, POW10_SPLIT_2[p], j + 8); #ifdef RYU_DEBUG printf("digits=%u\n", digits); #endif if (i < blocks - 1) { append_nine_digits(digits, result + index); index += 9; } else { const uint32_t maximum = precision - 9 * i; uint32_t lastDigit = 0; for (uint32_t k = 0; k < 9 - maximum; ++k) { lastDigit = digits % 10; digits /= 10; } #ifdef RYU_DEBUG printf("lastDigit=%u\n", lastDigit); #endif if (lastDigit != 5) { roundUp = lastDigit > 5; } else { // Is m * 10^(additionalDigits + 1) / 2^(-e2) integer? const int32_t requiredTwos = -e2 - (int32_t) precision - 1; const bool trailingZeros = requiredTwos <= 0 || (requiredTwos < 60 && multipleOfPowerOf2(m2, (uint32_t) requiredTwos)); roundUp = trailingZeros ? 2 : 1; #ifdef RYU_DEBUG printf("requiredTwos=%d\n", requiredTwos); printf("trailingZeros=%s\n", trailingZeros ? "true" : "false"); #endif } if (maximum > 0) { append_c_digits(maximum, digits, result + index); index += maximum; } break; } } #ifdef RYU_DEBUG printf("roundUp=%d\n", roundUp); #endif if (roundUp != 0) { int roundIndex = index; int dotIndex = 0; // '.' can't be located at index 0 while (true) { --roundIndex; char c; if (roundIndex == -1 || (c = result[roundIndex], c == '-')) { result[roundIndex + 1] = '1'; if (dotIndex > 0) { result[dotIndex] = '0'; result[dotIndex + 1] = '.'; } result[index++] = '0'; break; } if (c == '.') { dotIndex = roundIndex; continue; } else if (c == '9') { result[roundIndex] = '0'; roundUp = 1; continue; } else { if (roundUp == 2 && c % 2 == 0) { break; } result[roundIndex] = c + 1; break; } } } } else { memset(result + index, '0', precision); index += precision; } return index; } void d2fixed_buffered(double d, uint32_t precision, char* result) { const int len = d2fixed_buffered_n(d, precision, result); result[len] = '\0'; } char* d2fixed(double d, uint32_t precision) { char* const buffer = (char*)malloc(2000); const int index = d2fixed_buffered_n(d, precision, buffer); buffer[index] = '\0'; return buffer; } int d2exp_buffered_n(double d, uint32_t precision, char* result) { const uint64_t bits = double_to_bits(d); #ifdef RYU_DEBUG printf("IN="); for (int32_t bit = 63; bit >= 0; --bit) { printf("%d", (int) ((bits >> bit) & 1)); } printf("\n"); #endif // Decode bits into sign, mantissa, and exponent. const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0; const uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1); const uint32_t ieeeExponent = (uint32_t) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1)); // Case distinction; exit early for the easy cases. if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u)) { return copy_special_str_printf(result, ieeeSign, ieeeMantissa); } if (ieeeExponent == 0 && ieeeMantissa == 0) { int index = 0; if (ieeeSign) { result[index++] = '-'; } result[index++] = '0'; if (precision > 0) { result[index++] = '.'; memset(result + index, '0', precision); index += precision; } memcpy(result + index, "e+00", 4); index += 4; return index; } int32_t e2; uint64_t m2; if (ieeeExponent == 0) { e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS; m2 = ieeeMantissa; } else { e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS; m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa; } #ifdef RYU_DEBUG printf("-> %" PRIu64 " * 2^%d\n", m2, e2); #endif const bool printDecimalPoint = precision > 0; ++precision; int index = 0; if (ieeeSign) { result[index++] = '-'; } uint32_t digits = 0; uint32_t printedDigits = 0; uint32_t availableDigits = 0; int32_t exp = 0; if (e2 >= -52) { const uint32_t idx = e2 < 0 ? 0 : indexForExponent((uint32_t) e2); const uint32_t p10bits = pow10BitsForIndex(idx); const int32_t len = (int32_t) lengthForIndex(idx); #ifdef RYU_DEBUG printf("idx=%u\n", idx); printf("len=%d\n", len); #endif for (int32_t i = len - 1; i >= 0; --i) { const uint32_t j = p10bits - e2; // Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is // a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers. digits = mulShift_mod1e9(m2 << 8, POW10_SPLIT[POW10_OFFSET[idx] + i], (int32_t) (j + 8)); if (printedDigits != 0) { if (printedDigits + 9 > precision) { availableDigits = 9; break; } append_nine_digits(digits, result + index); index += 9; printedDigits += 9; } else if (digits != 0) { availableDigits = decimalLength9(digits); exp = i * 9 + (int32_t) availableDigits - 1; if (availableDigits > precision) { break; } if (printDecimalPoint) { append_d_digits(availableDigits, digits, result + index); index += availableDigits + 1; // +1 for decimal point } else { result[index++] = (char) ('0' + digits); } printedDigits = availableDigits; availableDigits = 0; } } } if (e2 < 0 && availableDigits == 0) { const int32_t idx = -e2 / 16; #ifdef RYU_DEBUG printf("idx=%d, e2=%d, min=%d\n", idx, e2, MIN_BLOCK_2[idx]); #endif for (int32_t i = MIN_BLOCK_2[idx]; i < 200; ++i) { const int32_t j = ADDITIONAL_BITS_2 + (-e2 - 16 * idx); const uint32_t p = POW10_OFFSET_2[idx] + (uint32_t) i - MIN_BLOCK_2[idx]; // Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is // a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers. digits = (p >= POW10_OFFSET_2[idx + 1]) ? 0 : mulShift_mod1e9(m2 << 8, POW10_SPLIT_2[p], j + 8); #ifdef RYU_DEBUG printf("exact=%" PRIu64 " * (%" PRIu64 " + %" PRIu64 " << 64) >> %d\n", m2, POW10_SPLIT_2[p][0], POW10_SPLIT_2[p][1], j); printf("digits=%u\n", digits); #endif if (printedDigits != 0) { if (printedDigits + 9 > precision) { availableDigits = 9; break; } append_nine_digits(digits, result + index); index += 9; printedDigits += 9; } else if (digits != 0) { availableDigits = decimalLength9(digits); exp = -(i + 1) * 9 + (int32_t) availableDigits - 1; if (availableDigits > precision) { break; } if (printDecimalPoint) { append_d_digits(availableDigits, digits, result + index); index += availableDigits + 1; // +1 for decimal point } else { result[index++] = (char) ('0' + digits); } printedDigits = availableDigits; availableDigits = 0; } } } const uint32_t maximum = precision - printedDigits; #ifdef RYU_DEBUG printf("availableDigits=%u\n", availableDigits); printf("digits=%u\n", digits); printf("maximum=%u\n", maximum); #endif if (availableDigits == 0) { digits = 0; } uint32_t lastDigit = 0; if (availableDigits > maximum) { for (uint32_t k = 0; k < availableDigits - maximum; ++k) { lastDigit = digits % 10; digits /= 10; } } #ifdef RYU_DEBUG printf("lastDigit=%u\n", lastDigit); #endif // 0 = don't round up; 1 = round up unconditionally; 2 = round up if odd. int roundUp = 0; if (lastDigit != 5) { roundUp = lastDigit > 5; } else { // Is m * 2^e2 * 10^(precision + 1 - exp) integer? // precision was already increased by 1, so we don't need to write + 1 here. const int32_t rexp = (int32_t) precision - exp; const int32_t requiredTwos = -e2 - rexp; bool trailingZeros = requiredTwos <= 0 || (requiredTwos < 60 && multipleOfPowerOf2(m2, (uint32_t) requiredTwos)); if (rexp < 0) { const int32_t requiredFives = -rexp; trailingZeros = trailingZeros && multipleOfPowerOf5(m2, (uint32_t) requiredFives); } roundUp = trailingZeros ? 2 : 1; #ifdef RYU_DEBUG printf("requiredTwos=%d\n", requiredTwos); printf("trailingZeros=%s\n", trailingZeros ? "true" : "false"); #endif } if (printedDigits != 0) { if (digits == 0) { memset(result + index, '0', maximum); } else { append_c_digits(maximum, digits, result + index); } index += maximum; } else { if (printDecimalPoint) { append_d_digits(maximum, digits, result + index); index += maximum + 1; // +1 for decimal point } else { result[index++] = (char) ('0' + digits); } } #ifdef RYU_DEBUG printf("roundUp=%d\n", roundUp); #endif if (roundUp != 0) { int roundIndex = index; while (true) { --roundIndex; char c; if (roundIndex == -1 || (c = result[roundIndex], c == '-')) { result[roundIndex + 1] = '1'; ++exp; break; } if (c == '.') { continue; } else if (c == '9') { result[roundIndex] = '0'; roundUp = 1; continue; } else { if (roundUp == 2 && c % 2 == 0) { break; } result[roundIndex] = c + 1; break; } } } result[index++] = 'e'; if (exp < 0) { result[index++] = '-'; exp = -exp; } else { result[index++] = '+'; } if (exp >= 100) { const int32_t c = exp % 10; memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2); result[index + 2] = (char) ('0' + c); index += 3; } else { memcpy(result + index, DIGIT_TABLE + 2 * exp, 2); index += 2; } return index; } void d2exp_buffered(double d, uint32_t precision, char* result) { const int len = d2exp_buffered_n(d, precision, result); result[len] = '\0'; } char* d2exp(double d, uint32_t precision) { char* const buffer = (char*)malloc(2000); const int index = d2exp_buffered_n(d, precision, buffer); buffer[index] = '\0'; return buffer; }