
Ryū: Fast Float-to-String Conversion

Ulf Adams
Google Germany

ulfjack@google.com

Abstract

We present Ryū, a new routine to convert binary floating
point numbers to their decimal representations using only
fixed-size integer operations, and prove its correctness. Ryū
is simpler and approximately three times faster than the
previously fastest implementation.

CCS Concepts · Computing methodologies → Repre-

sentation of mathematical objects;

Keywords float, string, performance

ACM Reference Format:

Ulf Adams. 2018. Ryū: Fast Float-to-String Conversion. In Proceed-

ings of 39th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI’18). ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3192366.3192369

1 Introduction

Some applications output many floating point numbers. For
these applications, finding a simple, fast conversion routine is
valuable. For example, JavaScript engines use floating point
for their primary number type, so any time they output a
number they use such a routine. The most common use case
in practice is conversion from binary floating point numbers
to decimal strings.
We use the same three correctness criteria as Steele and

White [15]: (1) Information preservation Ð a correct
parser must return the original floating point value from the
output. (2) Minimum-length output Ð the output string
must be as short as possible. (3) Correct rounding Ð the
output string must be as close to the input as possible.

We do not apply their fourth criteria, which is left-to-right
generation. Output is usually buffered, which makes the
order in which a routine generates digits inconsequential.

Routines following these criteria can still produce different
output due to two edge cases. (1) Depending on the round-
ing mode of the correct parser, the conversion routine may
or may not output the exact halfway point between two

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5698-5/18/06.

https://doi.org/10.1145/3192366.3192369

consecutive floating point numbers. (2) If the input lies ex-
actly halfway between two shortest information-preserving
strings, then these criteria do not provide a rule to break
such ties. Our routines support all rounding modes for the
parser, as well as for breaking ties.
Section 2 describes a simple, complete, and correct con-

version routine that uses arbitrary precision arithmetic.
Based on this, Section 3 introduces Ryū, which signifi-

cantly reduces the number of required bits. It is simple to
implement, leading to a robust and fast implementation.

Section 4 evaluates the performance of Ryū, comparing our
C implementation to Grisu3, and our Java implementation
to OpenJDK and Jaffer’s algorithm [10]. Our results indicate
that Ryū is about three times faster than the best existing
conversion routine that follows these criteria.

Section 5 reviews the existing literature. All of the early ap-
proaches require arbitrary precision arithmetic in the general
case. More recent developments work with fixed precision
arithmetic, which is faster, but can increase the complexity
of the code. By contrast, Ryū is simple and fast.

Section 6 briefly reviews our results.

2 Basic Conversion Routine

After briefly reviewing the IEEE floating point format in
Section 2.1, Section 2.2 outlines a simple and correct rou-
tine to convert such numbers into decimal strings: (1) De-
code the floating point number. (2) Compute the interval of
information-preserving outputs. (3) Convert the interval to
a decimal power base. (4) Determine the shortest, correctly-
rounded string within this interval. (5) Print.
Of these, step 4 is the most complex Ð Section 2.3 intro-

duces the compute_shortest algorithm, which determines
an interval of minimum-length outputs within a given in-
terval of information-preserving outputs by repeatedly re-
moving trailing digits as long as the resulting interval is not
empty. Section 2.4 then describes how to find the correctly-
rounded output within this interval, and how to determine
whether there is a tie.

Steps 3 and 4 both require arithmetic with a number of
bits exponential in the size of the exponent of the underlying
floating point type, i.e., they do not perform well for larger
floating point types. Even so, the basic conversion routine
is useful for validating high-performance implementations
due to its simplicity. Section 4 describes how we used it to
discover correctness issues in existing implementations.

270

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3192366.3192369
https://doi.org/10.1145/3192366.3192369
rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Ulf Adams

2.1 IEEE Floating Point Types

The IEEE 754 standard [9] specifies 16-, 32-, 64-, 128-, and
256-bit floating point numbers, as well as general rules for
even larger sizes. The bit representation of such a floating
point number consists of a sign bit s , an unsigned exponent
e , and an unsigned mantissam, in that order.

In the common case, exponent values are neither all zeros
nor all ones (0...0)2 < e < (1...1)2; we call these normal-
ized. Interpreting a normalized value as a number involves
prepending an implicit leading 1 to the mantissa, and sub-
tracting an IEEE-defined bias from the exponent. An expo-
nent of all zeros e = (0...0)2 indicates subnormal numbers
which prepend an implicit leading 0 instead. An exponent
value of all ones e = (1...1)2 indicates either ±Infinity or
NaN depending on the value of the mantissa.
In summary, the IEEE 754 standard specifies the value f

of a floating point number as:

f =

(−1)s · 1.m · 2e−bias if (0...0)2 < e < (1...1)2

(−1)s · 0.m · 21−bias if e = (0...0)2

(−1)s · Infinity if e = (1...1)2,m = 0

NaN if e = (1...1)2,m , 0

2.2 Conversion Process

The following steps convert a floating point number f from
IEEE binary encoding into a decimal string representation:
Step 1. Decode the floating point number, and unify nor-

malized and subnormal cases.
Extract the sign bit s , exponent e , and mantissam. Imme-

diately return the desired output if f is ±Infinity, NaN, or
±0.0. Otherwise, f must be normalized or subnormal. We
convert f into the intermediate form f = (−1)s ·mf · 2

ef

such thatmf is an unsigned integer. Makingmf an integer
involves moving the decimal dot all the way to the right,
which requires subtracting the length of the mantissa len(m)

from the exponent to compute ef :

mf =

2len(m)

+m if e , 0

m if e = 0

ef =

e − bias − len(m) if e , 0

1 − bias − len(m) if e = 0

Step 2. Determine the interval of information-preserving
outputs.

We compute the halfway points to the next smaller and
larger floating point values f − and f + of the same float-
ing point type, and represent these as u · 2e2 and w · 2e2 ,
respectively. We also convert f into the same form v · 2e2

intentionally using the same exponent e2, which is required

for step 4. Using e2 = ef − 2 guarantees that all of u, v , and
w are integers.

First consider the larger halfway point. Given f =mf ·2
ef ,

the next larger number of the same precision is f + = (mf +

1) · 2ef , resulting in a halfway point of

(f + f +)/2 = (2mf + 1) · 2
ef −1
= (4mf + 2) · 2

e2 .

The only exception occurs if f is itself the largest rep-
resentable floating point number, i.e., m = (1...1)2 and
e = (1..10)2. In that case, the next larger number is infin-
ity, and we define the larger halfway point using the same
equation as all other cases for simplicity and consistency.
Now consider the smaller halfway point. If m is not all

zeros, then the next smaller number is f − = (mf − 1) · 2
ef ,

resulting in (4mf − 2) · 2
e2 . The same formula applies if f is

the smallest normalized floating point valuem = 0, e = 1. Its
next smaller floating point value ism′ = (1...1)2 and e

′
= 0,

which results in the same expression.
If the mantissa is zero and the exponent is greater than

one, then the next smaller number ism′ = (1...1)2, e
′
= e −1,

resulting in (4mf − 1) · 2
e2 .

In summary, we represent the 3-tuple (smaller halfway
point, f , larger halfway point) as (u,v,w) · 2e2 with:

e2 = ef − 2

u = 4mf −

1 ifm = (0...0)2 and e > (0..01)2

2 otherwise

v = 4mf

w = 4mf + 2

Step 3. Convert (u,v,w) · 2e2 to a decimal power base.
We determine values for (a,b, c) and e10 such that (a,b, c) ·

10e10 equals (u,v,w) · 2e2 ; there are many possible choices
for e10, and we choose specific values to prepare for the new
conversion routine presented in Section 3. If e2 is greater
than or equal to zero, we choose e10 to be zero. Otherwise, we
choose e10 to be identical to e2, which requires multiplying
all numbers by 5−e2 :

e2 ≥ 0⇒ e10 = 0, (a,b, c) = (u,v,w) · 2e2

e2 < 0⇒ e10 = e2, (a,b, c) = (u,v,w) · 5−e2

Step 4. Find a shortest, correctly-rounded decimal repre-
sentation in the interval of legal representations.
We determine two integers do and eo such that

a · 10e10 < do · 10
eo+e10 < c · 10e10

and eo is maximal, allowing equality to the smaller or larger
halfway point depending on the rounding mode. There may
be multiple possible values for do in which case we need to
pick the one closest to f . We provide an algorithm for this
step in Sections 2.3 and 2.4.
Step 5. Print the decimal representation.
Finally, print (−1)s · do · 10

eo+e10 in the desired form. For
example, to print in scientific notation, we can use an existing

271

Ryū: Fast Float-to-String Conversion PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

integer to string conversion routine to convert do . Let the
length of the resulting string be len. Prepend the sign, insert
the character ł.ž after the first digit, append a character łež,
and append the exponent (eo + e10 + len − 1) also converted
to a decimal string.

2.3 Finding the Shortest Decimal Representation by

Repeated Division

Let a and c be the boundaries of an interval within which we
want to find the shortest decimal representation. As we will
see, the algorithm requires 0 < a < c − 1 as a precondition,
which holds when a and c are computed as described in
step 3.

Using the given rounding mode and the sign of f , we intro-
duce two boolean flags accept_smaller and accept_larдer ,
which indicate whether the smaller or larger boundary may
be returned exactly, respectively. Then we determine do and
eo , such that

a ≤ do · 10

eo if accept_smaller = true

a < do · 10
eo otherwise

AND

do · 10

eo ≤ c if accept_larдer = true

do · 10
eo < c otherwise,

(information preservation) and eo is maximal (minimum-
length output), i.e., there is no valid solution (dt , et) with
et > eo .

The following algorithm computes do and eo :
def compute_shortest(

a, b, c , accept_smaller , accept_larдer)

i = 0, a0 = a, c0 =

c if accept_larдer

c − 1 otherwise

all_a_zero0 = true
while ⌊ai/10⌋ < ⌊ci/10⌋:

all_a_zeroi+1 = all_a_zeroi AND ai%10 == 0
ai+1 = ⌊ai/10⌋, ci+1 = ⌊ci/10⌋
i = i + 1

if accept_smaller AND all_a_zeroi :
while ai%10 == 0 :

ai+1 = ai/10, ci+1 = ⌊ci/10⌋
i = i + 1

return (do , eo) = (ci , i)

Lemma 2.1. The compute_shortest algorithm terminates

and returns a result that maintains information preservation

and minimum-length output.

Proof. Termination: the first loop maintains a loop invari-
ant of ai < ci , which together with the precondition 0 < a0
implies 0 ≤ ai < ci . The first loop terminates after a finite
number of steps, because all the ci are positive integers, and
the sequence c0, c1, ... is strictly decreasing. In the worst case,
the loop continues until ai = 0, and ci < 10. Therefore there

must be an index j such that ⌊aj/10⌋ = ⌊c j/10⌋, at which
point the first loop exits.
If accept_smaller is false or all_a_zeroj is false, then the

algorithm terminates immediately after exiting the first loop.
Otherwise accept_smaller and all_a_zeroj are both true. By
induction over the first loop, all_a_zeroj being true implies
that all digits removed from a so far were zeros. Since no
nonzero digits have been removed, and 0 < a, there must be
at least one nonzero digit left in aj . That, in turn, implies that
there must be an index k ≥ j for which ak%10 is not zero,
at which point the second loop terminates. This index must
be reached in a finite number of steps, because all the ai are
integer, and the sequence aj ,aj+1, ... is strictly decreasing.

Information preservation: by induction, we obtain for
all i ≤ k that ai = ⌊a0/10

i ⌋ and ci = ⌊c0/10
i ⌋. This implies

that c j · 10
j
= ⌊c0/10

j ⌋ · 10j ≤ c0.
If accept_smaller is false, or all_a_zeroj is false, or aj%10

is not zero, then the algorithm exits after the first loop with
(do , eo) = (c j , j) and it holds that

a < (⌊a0/10
j ⌋ + 1) · 10j = (aj + 1) · 10

j ≤ c j · 10
j

AND

c j · 10

j ≤ c0 = c if accept_larдer = true

c j · 10
j ≤ c0 < c otherwise

as required.
Otherwise, after exiting the first loop, both all_a_zeroj

and accept_smaller are true, and aj%10 is zero. After the first
iteration, the second loop maintains the invariant ai = ci
and a = ai · 10

i
= ci · 10

i for all j < i ≤ k , again by induction.
Therefore, the algorithm exits with (do , eo) = (ck ,k) and it
holds that

a = ck · 10
k

AND

ck · 10

k ≤ c if accept_larдer = true

ck · 10
k < c otherwise

as required.
Minimum-length output: we show that eo is maximal

by contradiction. Assume that there is another solution
(dt , et) with et greater than eo .
Further assume that accept_smaller is false, so the algo-

rithm exits with (c j , j), and et ≥ j + 1. It follows that

a0 < dt · 10
et ≤ c0 ⇔ ⌊a0/10

et ⌋ < dt ≤ ⌊c0/10
et ⌋ .

We replace ⌊a0/10
j ⌋ with aj and ⌊c0/10

j ⌋ with c j to obtain

⌊aj/10
et−j ⌋ < dt ≤ ⌊c j/10

et−j ⌋

with et − j ≥ 1. This is a contradiction, because the first loop
only terminates if ⌊aj/10⌋ ≥ ⌊c j/10⌋.
We still need to cover the case where accept_smaller is

true. We have already shown that there is no pair (dt , et)
such that a < dt · 10

et ≤ c0 and et > j. We therefore only

272

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Ulf Adams

need to consider pairs such that a is equal to dt · 10
et and

et greater than k . If all_a_zeroj is false, then there is no
et greater than j such that a is equal to dt · 10

et , because
all_a_zeroj being false implies that at least one of the trailing
j digits of a is nonzero.
Otherwise both accept_smaller and all_a_zeroj are true,

and the second loop is executed until ak%10 is nonzero. But
if the k + 1st trailing digit of a is nonzero, then no et ≥ k + 1
can exist such that a = dt · 10

et . □

2.4 Finding the Correctly-Rounded Decimal

Representation

We now modify the compute_shortest algorithm to output
the string that is not just a shortest string, but actually the
closest to the original value. We modify compute_shortest

in three places as follows, assuming the existence of an ad-
ditional break_tie_down parameter to control whether ties
should be broken by rounding down.
(1) Add the following code to the initialization:

diдit0 = 0, all_b_zero0 = true, b0 = b

(2) Add the following code to the two loops before the
updates to i respectively:

diдiti+1 = bi%10
all_b_zeroi+1 = all_b_zeroi AND (diдiti == 0)
bi+1 = ⌊bi/10⌋

(3) Replace the return statement with:
is_tie = (diдiti == 5) AND all_b_zeroi
want_round_down = (diдiti < 5)

OR (is_tie AND break_tie_down)
round_down = (want_round_down

AND (ai , bi OR all_a_zeroi))
OR (bi + 1 > ci)

return (d0, e0) = *
,

bi if round_down

bi + 1 otherwise
, i+-

Lemma 2.2. The modified compute_shortest algorithm

terminates and returns a result that maintains information

preservation, minimum-length output, and correct rounding.

Proof. Termination: immediately follows from Lemma 2.1.
Informationpreservation,minimum-length output:

given a < b < c as a precondition, which holds by construc-
tion of step 3, it follows by induction that ai ≤ bi ≤ ci . From
the proof of Lemma 2.1, it also follows that the legal interval
is the interval from ai to ci , with the lower bound being
inclusive if and only if all_a_zeroi is true, and the upper
bound always being inclusive.

A return value of bi is therefore legal if and only if ai , bi
or all_a_zeroi is true, and a return value of bi + 1 is illegal
if and only if bi + 1 > ci ; this exactly matches the added
conditions for round_down in (3). Note that it is not possible
for bi and bi + 1 to both be illegal at the same time as we
have previously shown that ci is a legal output and bi ≤ ci .

Correct rounding: by construction, b · 10e10 is equal to
v · 2e2 is equal tomf · 2

ef is equal to | f |. Furthermore, by

induction bi = ⌊b/10
i ⌋. It follows that bi · 10

i+e10 ≤ | f | <

(bi + 1) · 10
i+e10 .

Of these two,bi is closer to | f | if and only ifdiдiti < 5, and
bi + 1 is closer to | f | if and only if diдiti ≥ 5 and all_b_zeroi
is false. | f | is exactly halfway between the two options if
and only if diдiti = 5 and all_b_zeroi is true. In that case,
we can apply any desired rounding mode to break the tie.
Given break_tie_down, this exactly matches the conditions
added forwant_round_down. □

3 Ryū

We now introduce Ryū. Starting from the basic conversion
routine described above, we show how to reduce the num-
ber of bits of the intermediate computations as well as the
number of iterations to improve the performance of the
compute_shortest algorithm for larger floating point types.

The first two steps of the basic conversion routine above
only require simple integer operations, which are fast. We
follow these two steps, decode the number f , and compute
the interval of legal decimal representations (u,w) · 2e2 .

We then combine the power base conversion (step 3) with
the first q iterations of the algorithm’s primary loop into a
single step 3’, with q chosen as large as possible such that the
algorithm’s primary loop invariant still holds. As we will see,
we can choose q such that only a small number of iterations
of the algorithm remain, which constitutes step 4’.
In order to skip parts of the primary loop, we need to di-

rectly compute the values of all its variables after q iterations.
We subdivide this problem into three subproblems:

Lemma3.1. Let (a,b, c),accept_smaller , andaccept_larдer

be the inputs to the compute_shortest algorithm. We can

compute intermediate values for all the variables in the pri-

mary loop if we can solve these three subproblems:

(1) Choose q such that the corresponding values of aq and

cq are small, but still differ by at least two in order to maintain

the primary loop invariant, i.e., ⌊a/10q⌋ < ⌊c/10q⌋ − 1.
Section 3.1 determines an appropriate upper bound for q,

which in turn limits the magnitude of the intermediate values
⌊(a,b, c)/10q⌋ Ð they usually fit into n bits if the underlying
floating point type has n bits.
(2) Compute ⌊(a,b, c)/10q⌋ directly from (u,v,w) using

fixed-precision arithmetic.

Depending on the sign of e2, wemultiply by either ⌊5q/2k ⌋
or (⌊2k/5q⌋ + 1) and shift the resulting products right by
an appropriate amount. This is trivially correct for k equal
to zero in the first case and large values of k in the second
case. Using a software-assisted proof, Section 3.2 derives
non-trivial lower / upper bounds for k for the standard IEEE
floating point types. This is the key contribution of our paper:
it reduces the number of bits required for the multipliers to

273

Ryū: Fast Float-to-String Conversion PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

approximately 2n for all considered cases, and is the main
reason for Ryū’s simplicity and performance.
(3) Finally, we need to infer whether all of the q removed

digits of a, b, and c were zeros without computing their actual

values, i.e., whether a%10q = 0 is true, whether b%10q = 0 is
true, and whether c%10q = 0 is true.

Section 3.3 solves this problem using partial prime factor-
izations. Based on these results, Section 3.4 summarizes the
Ryū’s new steps 3’ and 4’.

Proof. We need to compute the values of all local variables
after q iterations, namely aq , bq , cq , and all_a_zeroq (Sec-
tion 2.3), as well as diдitq and all_b_zeroq in order to imple-
ment correct rounding (Section 2.4), and we conservatively
require that the loop invariant holds, i.e., aq < cq .
We obtain aq = ⌊a/10

q⌋ from the proof of Lemma 2.1.
Furthermore, all_a_zeroq is true if and only if all q removed
digits from a were zeros.
The value of cq depends on the accept_larдer flag. If

accept_larдer is true, then cq = ⌊c/10
q⌋. If accept_larдer

is false, then we need to compute ⌊(c − 1)/10q⌋ instead:

⌊(c − 1)/10q⌋ =

⌊c/10q⌋ − 1, if c%10q = 0

⌊c/10q⌋, otherwise

That is, we can derive cq from ⌊c/10q⌋ if we also know
whether all of the q removed digits from c were zeros.

Given ⌊a/10q⌋ < ⌊c/10q⌋ − 1, we can conservatively infer
that the loop invariant aq < cq still holds even if all removed
digits from c were zeros and accept_larдer is false.
Furthermore, all_b_zeroq is true if and only if q − 1 re-

moved digits from b were zeros. diдitq is never read inside
the loop, so we do not require a value for it as long as either
q is zero Ð in which case it must be zero Ð or we can ensure
that the loop is executed at least once. In order to do so, we
use q′ = max(0,q − 1) instead of q. □

3.1 Maximum Number of Iterations q That Can Be

Safely Combined

The more iterations of the compute_shortest algorithm we
can combine, the fewer bits are needed to represent the re-
sulting intermediate values, and the fewer iterations remain.
However, we have to choose q such that the primary loop
invariant still holds to maintain correctness.

Lemma 3.2. Let (u,v,w) and e2 be given as above, as well as

(a,b, c) = (u,w) · 2e2 or (a,b, c) = (u,v,w) · 5−e2 depending
on the sign of e2.

• If e2 ≥ 0, choose q = ⌊e2 log10 2⌋ to ensure ⌊a/10
q⌋ <

⌊c/10q⌋−1. The resulting value of ⌊c/10q⌋ is at most ten

times larger than the original numberw , i.e., ⌊c/10q⌋ ≤
10 ·w , so it fits into an unsigned integer with the same

number of bits as the original floating point number

for all IEEE floating point types. Note that the resulting

value may be a hundred times larger thanw if we use

q′ = max(0,q − 1) instead of q (see Lemma 3.1).

• For e2 < 0, choose q = ⌊−e2 log10 5⌋. It holds that
⌊c/10q⌋ ≤ 10 ·w .

Proof. We only consider the case e2 ≥ 0, and omit the almost
identical proof for e2 < 0 for brevity. Starting with q, we
rearrange:

q = ⌊e2 log10 2⌋

⇒ q ≤ e2 log10 2

⇒ 10q ≤ 2e2

⇒ 2 · 10q ≤ 2 · 2e2

⇒ 2 · 10q < 2 · 2e2 + 2e2 + u · 2e2 − u · 2e2

⇒ 2 < (u + 3) · 2e2/10q − u · 2e2/10q

By construction in step 2 of the basic conversion routine,
we know that u + 3 ≤ w . We replace and simplify to get

2 < w · 2e2/10q − u · 2e2/10q ⇒ 2 < c/10q − a/10q

On the right-hand side, we introduce the floor function
into both terms.We need to add 1 to the first term tomaintain
the inequality; the second term is negative, so making it
slightly smaller does not affect the inequality. We simplify
to get

2 < ⌊c/10q⌋ + 1 − ⌊a/10q⌋

⇒ ⌊a/10q⌋ < ⌊c/10q⌋ − 1

as desired.
We now show that ⌊c/10q⌋ is less than or equal to

10 · w . Starting with ⌊c/10q⌋ =
⌊
w · 2e2/10 ⌊e2 log10 2⌋

⌋
, we

remove the inner floor function by lowering its argument to
e2 log10 2 − 1, which can only increase the right-hand side
due to the division, and simplify to get

⌊c/10q⌋ ≤
⌊
w · 2e2/10e2 log10 2−1

⌋
⇒ ⌊c/10q⌋ ≤

⌊
w · 2e2/(2e2 · 10−1)

⌋
⇒ ⌊c/10q⌋ ≤ 10 ·w

as desired. □

3.2 Computing ⌊(a,b, c)/10q⌋

Starting with (u,v,w), computing ⌊(a,b, c)/10q⌋ is equiva-
lent to computing ⌊(u,v,w) ·2e2/10q⌋ or ⌊(u,v,w) ·5−e2/10q⌋
depending on the sign of e2. From Section 3.1, we also know
that q ≤ e2, so this simplifies to ⌊(u,v,w) · 2e2−q/5q⌋ or
⌊(u,v,w) · 5−e2−q/2q⌋, respectively.
For performance, we turn the division by 5q into a mul-

tiplication by 1/5q . This is similar to the previous work by
Granlund and Montgomery [8] on compiler optimization
to turn an n × n-bit division by a constant into an n × n-bit
multiplication.
While (u,v,w) are n-bit numbers, 5q and 5−e2−q are sig-

nificantly larger. However, we only need the top-most n bits
of the result, on which the lower bits of 5q and 5−e2−q are
unlikely to have any impact.

274

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Ulf Adams

Therefore, wemultiply by either ⌊5−e2−q/2k ⌋ or (⌊2k/5q⌋+
1), and show that there are non-trivial lower / upper bounds
fork at least for the standard IEEE floating point types that re-
duce the number of bits required for the multiplier to approx-
imately 2n. Section 3.2.1 derives a non-trivial lower bound
for k for the case e2 ≥ 0, and Section 3.2.2 derives a non-
trivial upper bound for k for the case e2 < 0. Note that the
derived bounds depend on the value of e2.
In both cases, the bounds depend on the minimum or

maximum of a product modulo some power. Section 3.2.3
provides a modified Euclid’s algorithm to efficiently compute
such minima and maxima.
Section 3.2.4 shows that the number of bits needed of
⌊5−e2−q/2k ⌋ and (⌊2k/5q⌋ + 1) is bound by relatively small
constants at least for all IEEE floating point types up to 256
bits. This allows us to forgo storing individual values of k
for each value of e2, and instead compute appropriate values
for k from the corresponding floating-point-type-specific
constants.

3.2.1 Case e2 ≥ 0

Lemma 3.3. Given a specific floating point type, let (a,b, c) =

(u,v,w) · 2e2 as before with e2 ≥ 0, and q = ⌊e2 log10 2⌋. Then
for all

k > log2
max(w) · 2e2−q5q

5q −max((w · 2e2−q)%5q)

with max taken across all possible values of w for the given

floating point type, it holds that

⌊(a,b, c)/10q⌋ = ⌊(u,v,w) · 2e2−q−k · (⌊2k/5q⌋ + 1)⌋ .

Proof. We only show this for c for brevity. Let δ be the dis-
tance between the untruncated right-hand side and the de-
sired result, i.e.,

δ = w · 2e2−q−k · (⌊2k/5q⌋ + 1) − ⌊c/10q⌋

⇔ δ = w · 2e2−q−k · (⌊2k/5q⌋ + 1) − ⌊w · 2e2−q/5q⌋ .

If δ is between 0 and 1, then the desired equality holds. We
first show that δ is greater than zero. It holds that ⌊2k/5q⌋+1
is greater than 2k/5q . We multiply both sides byw · 2e2−q−k

and simplify to obtain

w · 2e2−q−k · (⌊2k/5q⌋ + 1) > w · 2e2−q−k2k/5q

⇒ w · 2e2−q−k · (⌊2k/5q⌋ + 1) > ⌊w · 2e2−q/5q⌋

⇒ w · 2e2−q−k · (⌊2k/5q⌋ + 1) − ⌊w · 2e2−q/5q⌋ > 0

⇒ δ > 0

as desired.

We therefore only need to show that δ is less than one.

k > log2
max(w) · 2e2−q · 5q

5q −max((w · 2e2−q)%5q)

⇔ 2k >
max(w) · 2e2−q · 5q

5q −max((w · 2e2−q)%5q)

⇔ max(w) · 2e2−q5q

+ 2k ·max((w · 2e2−q)%5q) < 5q2k

We erase both maximum functions, which can only decrease
the left-hand side, divide by 2k , and rearrange to obtain

w · 2e2−q · 5q/2k + ((w · 2e2−q)%5q) < 5q

⇒ w · 2e2−q · 5q/2k +w · 2e2−q −w · 2e2−q

+ ((w · 2e2−q)%5q) < 5q

⇒ w · 2e2−q · (1 + 5q/2k)/5q

−(w · 2e2−q − ((w · 2e2−q)%5q))/5q < 1.

We use the identity (x − x%y)/y = ⌊x/y⌋ to replace the
modulo function and obtain:

w · 2e2−q · (1 + 5q/2k)/5q − ⌊w · 2e2−q/5q⌋ < 1.

Furthermore, considering the expression (1 + 5q/2k)/5q , we
observe that 5q/2k · ⌊2k/5q⌋ is less than or equal to one and
get

(1 + 5q/2k)/5q ≥ (5q/2k · ⌊2k/5q⌋ + 5q/2k)/5q

= 2−k · (⌊2k/5q⌋ + 1).

We substitute and simplify to obtain

w · 2e2−q−k · (⌊2k/5q⌋ + 1) − ⌊w · 2e2−q/5q⌋ < 1

⇒ δ < 1

as desired. □

3.2.2 Case e2 < 0

Lemma 3.4. Given a specific floating point type, let (a,b, c) =

(u,v,w) · 5−e2 as before with e2 < 0, and q = ⌊−e2 log5 2⌋.
Then for all

0 ≤ k ≤ log2
min
(

(w · 5−e2−q)%2q
)

max(w)

with min and max taken across all possible values ofw for the

given floating point type, it holds that

⌊(a,b, c)/10q⌋ = ⌊(u,v,w) · ⌊5−e2−q/2k ⌋/2q−k ⌋ .

Proof. We only show this for c for brevity. Let δ be the dis-
tance between the untruncated right-hand side and the de-
sired result, i.e.,

δ = w · ⌊5−e2−q/2k ⌋/2q−k − ⌊c/10q⌋

⇔ δ = w · ⌊5−e2−q/2k ⌋/2q−k − ⌊w · 5−e2−q/2q⌋

If δ is greater than or equal to zero and less than one,
then the desired equality holds. We first show that δ is less

275

Ryū: Fast Float-to-String Conversion PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

than one by contradiction. Assume that δ is greater than one,
which implies

w · ⌊5−e2−q/2k ⌋/2q−k − ⌊w · 5−e2−q/2q⌋ ≥ 1

⇒ w · ⌊5−e2−q/2k ⌋/2q−k − 1 ≥ ⌊w · 5−e2−q/2q⌋

⇒ ⌊w · ⌊5−e2−q/2k ⌋/2q−k ⌋ > ⌊w · 5−e2−q/2q⌋

However, ⌊5−e2−q/2k ⌋ is smaller than or equal to 5−e2−q/2k .
We multiply both sides byw · 2k/2q and take the floor func-
tion on both sides to obtain

w · 2k/2q · ⌊5−e2−q/2k ⌋ ≤ w · 2k/2q · 5−e2−q/2k

⇒ w/2q−k · ⌊5−e2−q/2k ⌋ ≤ w/2q · 5−e2−q

⇒ ⌊w · ⌊5−e2−q/2k ⌋/2q−k ⌋ ≤ ⌊w · 5−e2−q/2q⌋

which is a contradiction.
We therefore only need to show that δ is greater than or

equal to zero.

k ≤ log2
min((w · 5−e2−q)%2q)

max(w)

⇒ max(w) · 2k ≤ min((w · 5−e2−q)%2q)

We decrease the left-hand side by erasing the maximum
function and replacing 2k by 5−e2−q%2k . On the right-hand
side, we also erase the minimum function, which can only
increase the value.

w · 2k ≤ (w · 5−e2−q)%2q

⇒ w · (5−e2−q%2k) ≤ (w · 5−e2−q)%2q

⇒ 0 ≤ ((w · 5−e2−q)%2q) −w · (5−e2−q%2k)

+ w · 5−e2−q −w · 5−e2−q

⇒ 0 ≤ w · (5−e2−q − (5−e2−q%2k))

− (w · 5−e2−q − ((w · 5−e2−q)%2q))

We use the identity (x − x%y) = ⌊x/y⌋ · y to replace the
modulo function, and divide both sides by 2q to obtain

0 ≤ w · ⌊5−e2−q/2k ⌋ · 2k − ⌊w · 5−e2−q/2q⌋ · 2q

⇒ 0 ≤ w · ⌊5−e2−q/2k ⌋/2q−k − ⌊w · 5−e2−q/2q⌋

as desired. □

3.2.3 Efficiently Computing the Minimum and

Maximum of a Modular Product

For smaller floating point types, it is possible to compute
the minima and maxima needed for Lemmas 3.3 and 3.4
through exhaustive searching. However, this is no longer
feasible for the larger types. In this section, we provide a
sublinear algorithm to compute the minimum and maximum
of a modular product ax%b over a given range 0 < x ≤

M < b with a < b, and a and b coprime. We also provide a
correctness proof, although we omit some details for brevity.

The algorithm as given here only computes a conservative
approximation of the true minimum and maximum, since we

may not get an exact match forM , but a slightly larger bound.
This turns out not to be a problem in practice Ð the result-
ing numbers are still sufficient to support our conversion
algorithm.
Given a, b, and M , the following algorithm computes

(min,max), which is a conservative approximation of the
true minimum and maximum:

def minmax_euclid(a, b,M)
a0 = a, b0 = b, s0 = 1, t0 = 0, u0 = 0, v0 = 1
i = 0
while True:

while bi ≥ ai : // Loop A
bi+1 = bi − ai , ui+1 = ui − si , vi+1 = vi − ti
ai+1 = ai , si+1 = si , ti+1 = ti
i = i + 1
if −ui ≥ M return (ai ,bi)

if bi == 0 return (1,b − 1)
while ai ≥ bi : // Loop B

ai+1 = ai − bi , si+1 = si − ui , ti+1 = ti −vi
bi+1 = bi , ui+1 = ui , vi+1 = vi
i = i + 1
if si ≥ M return (ai ,bi)

if ai == 0 return (1,b − 1)
The minmax_euclid algorithm is an extension of the well-

known extended Euclidean algorithm, which computes the
greatest common divisor as well as the coefficients x and y
of the Bézout identity ax + by = 1.

We use a non-standard formulation to simplify our proof.
In particular, instead of keeping a single set of variables and
alternating between remainders and coefficients, we keep
them as separate sequences. In our formulation, the primary
loop invariants are asi + bti = ai and aui + bvi = bi . In
addition, the sequences si and vi are strictly increasing, and
the sequences ti , ui , ai , and bi are strictly decreasing. These
properties directly follow from Knuth’s [11] proof of the
extended Euclidean algorithm.
As we will show below, each pair (ai ,−bi%b) represents

the minimum and maximum of ax%b over the range 0 < x ≤

max(si ,−ui). minmax_euclid returns (ai ,−bi%b) as soon as
max(si ,−ui) ≥ M , which is a conservative approximation to
the true minimum and maximum. minmax_euclid returns
(1,b − 1) ifM is greater than or equal to the multiplicative
inverse of a modulo b, i.e.,M > a−1%b.

Lemma 3.5. Algorithm minmax_euclid determines the min-

imum and maximum of a modular product. I.e., for all i > 0
and for all x with 0 < |x | ≤ max(si ,−ui), it holds that

ai ≤ ax%b ≤ −bi%b.

Proof. We perform this proof by induction over i , following
the structure of the code. For i = 1 (base case), we observe
max(s1,−u1) = 1, a1 = a, and b1 = b − a. It follows that

0 < |x | ≤ 1→ a ≤ ax%b ≤ −a%b .

276

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Ulf Adams

We consider loops A and B separately, and distinguish
between the first iteration and subsequent iterations of each
loop. For each of these four cases, we assume that the in-
duction statement holds for i (induction assumption), and
show that it must also hold for i + 1 (induction hypothesis)
by contradiction.
We first assume that an integer triplet x ,y,p exists such

that

ax + by = p AND

max(si ,−ui) < x ≤ max(si+1,−ui+1) AND

(p < ai+1 OR p > −bi+1%b).

The existence of such a triplet contradicts the induction hy-
pothesis, but not the induction assumption. Given x ,y,p, we
then construct a new triplet x ′,y ′,p ′ with x ′ < max(si ,−ui)
and either p ′ < ai or p

′ > −bi%b. This contradicts the induc-
tion assumption. Therefore such a triplet x ,y, z cannot exist,
and the induction hypothesis holds, completing the proof.
There are a total of sixteen (2 × 2 × 2 × 2) cases we need

to consider: two cases for x , x < 0 or x > 0, two cases for

p, p < ai or p > −bi%b, the two loops A and B, as well as
whether it is the first or a subsequent iteration.

In all cases, we use one of the loop invariants asj +btj = aj
or auj + bvj = bj for either j = i or j = i + 1, and add or
subtract ax + by = p to obtain the x ′,y ′,p ′ triplet, and then
show that this triplet contradicts the induction assumption.
Figure 1 provides abbreviated proofs for all sixteen cases

split into four sections corresponding to two sections for
each of the loops. In each section, the first two rows provide
the induction assumption and the induction hypothesis for
that section. In particular, these differ in their bounds for |x |.
Each section is further split into four cases based on the

sign of x , and whether p < ai+1 or p > −bi+1%b. The first
column specifies the case. The first row in the second column
then gives a formula for x ′. The first row in the third column
gives the matching formula for p ′ which is fully determined
by the formula for x ′. The second row in the second column
then first shows that x ′ is within the range of the induction
assumption, and the second row in the third column shows
that p ′ is outside the legal range of the induction assumption.

□

Loop A, first iteration

Pre: −ui < si , 0 < |x | ≤ si → ai ≤ ax%b ≤ −bi%b
Post: si < |x | ≤ −ui+1 → ai+1 ≤ ax%b ≤ −bi+1%b

Case x ′ p ′

x > 0,p < ai si − x ai − p

⇒ 0 < −x ′ < si p ′ < ai
x < 0,p < ai −ui + x −bi + p

⇒ 0 < −x ′ < si p ′ > −bi%b

x > 0,p > −bi+1%b −ui − x −bi − p

⇒ 0 < −x ′ < si p ′ > −bi%b

x < 0,p > −bi+1%b si + x ai + p

⇒ 0 < −x ′ < si p ′ > −bi%b
or p ′ < ai

Loop A, subsequent iterations

Pre: si < −ui , 0 < |x | ≤ −ui → ai ≤ ax%b ≤ −bi%b
Post: −ui < |x | ≤ −ui+1 → ai+1 ≤ ax%b ≤ −bi+1%b

Case x ′ p ′

x > 0,p < ai si − x ai − p

⇒ 0 < −x ′ < −ui p ′ < ai
x < 0,p < ai −ui + x −bi + p

⇒ 0 < −x ′ < −ui p ′ > −bi%b

x > 0,p > −bi+1%b −ui+1 − x −bi+1 − p

⇒ −ui > −x
′ > 0 p ′ > −bi%b

x < 0,p > −bi+1%b si + x ai + p

⇒ 0 < −x ′ < −ui p ′ > −bi%b
or p ′ < ai

Loop B, first iteration

Pre: si < −ui , 0 < |x | ≤ −ui → ai ≤ ax%b ≤ −bi%b
Post: −ui < |x | ≤ si+1 → ai+1 ≤ ax%b ≤ −bi+1%b

Case x ′ p ′

x > 0,p < ai+1 si+1 − x ai+1 − p

⇒ −ui > −x
′ > 0 p ′ < ai+1

x < 0,p < ai+1 −ui + x −bi + p

⇒ 0 < −x ′ < −ui p ′ > −bi%b
or p ′ < ai

x > 0,p > −bi%b −ui − x −bi − p

⇒ 0 < −x ′ < −ui p ′ > −bi%b

x < 0,p > −bi%b si+1 + x ai+1 + p

⇒ −ui > x ′ > 0 p ′ > −bi%b
or p ′ < ai+1

Loop B, subsequent iterations

Pre: −ui < si , 0 < |x | ≤ si → ai ≤ ax%b ≤ −bi%b
Post: si < |x | ≤ si+1 → ai+1 ≤ ax%b ≤ −bi+1%b

Case x ′ p ′

x > 0,p < ai+1 si − x ai − p

⇒ 0 < −x ′ < si p ′ < ai
x < 0,p < ai+1 −ui + x −bi + p

⇒ 0 < −x ′ < si p ′ > −bi%b
or p ′ < ai

x > 0,p > −bi%b −ui − x −bi − p

⇒ 0 < −x ′ < si p ′ > −bi%b

x < 0,p > −bi%b si + x ai + p

⇒ 0 < −x ′ < si p ′ > −bi%b
or p ′ < ai

Figure 1. Contradictions for all sixteen cases.

277

Ryū: Fast Float-to-String Conversion PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

3.2.4 Storing the Necessary Multipliers

Ryū uses two lookup tables to store the necessary multipliers
(⌊2k/5q⌋ + 1) and ⌊5−e2−q/2k ⌋ for all possible values of q. As
it turns out, these multipliers always fit into 2n-bit integers
for a given IEEE n-bit floating point type.

As an example, Figures 2 and 3 show the lower and upper
bounds of k for the 64-bit IEEE floating point type for the
cases e2 ≥ 0 and e2 < 0, respectively, as well as the num-
bers of bits needed to store (⌊2k/5q⌋ + 1) and ⌊5−e2−q/2k ⌋:
the minimum / maximum for k goes up linearly, but the
minimum number of bits to store remains flat.

Figure 2. The lower bound fork over the range 2 ≤ e2 ≤ 969
and ⌈k − log2 5

q⌉, which is the corresponding minimum

number of bits to store ⌊2k/5q⌋, as a function of e2 for the
64-bit IEEE floating point type.

Figure 3. The upper bound for k over the range 2 ≤ −e2 ≤
1076 and ⌈log2 5

−e2−q⌉ − k , which is the corresponding min-

imum number of bits to store ⌊5−e2−q/2k ⌋, as a function of
−e2 for the 64-bit IEEE floating point type, and e2 < 0.

Theminimumnumber of bits is flat for all the IEEE floating
point types up to 256 bit. Instead of storing a separate value
for k for each value of e2, we take the maximum number
of bits to store across each range, and compute k from that.
Figure 4 shows the number of bits stored for all IEEE floating
point types, given as B0 and B1 here, as well as the combined

number of entries in the two lookup tables, which together
indicate the memory requirements for Ryū. Note that this
table accounts for the adjustment to q in order to output
correctly-rounded strings (see Section 2.4).

Type B0 B1 #Entries Total Memory

Float16 15 21 11 44 Byte

Float32 60 63 78 624 Byte

Float64 124 124 617 9,872 Byte

Float128 249 246 9,865 315,680 Byte

Float256 501 501 157,828 10,100,992 Byte

Figure 4. For each of the IEEE floating point types, this table
provides the required number of bits to store (⌊2k/5q⌋ + 1)
(B0) and ⌊5

−e2−q/2k ⌋ (B1), the total size of the corresponding
lookup tables, and the total memory required.

3.3 Trailing Zeros of (a,b, c)

We now solve the third subproblem of Lemma 3.1 Ð deter-
mining whether all the removed digits from a, b, and c are
zeros. To this end, we introduce a predicateZ ({u,v,w }, e2,q),
which is true if and only if the corresponding formula
{a,b, c}%10q == 0 is true.

Lemma 3.6. Given (u,v,w), e2, and q as before:

Z ({u,v,w }, e2,q) =

{u,v,w }%5q == 0, if e2 ≥ 0

{u,v,w }%2q == 0, if e2 < 0

Proof. We only discuss u here for brevity. Let pi (x) be the
largest power of i that divides x . It holds that p10 (x) =
min(p2 (x),p5 (x)).
For the case e2 ≥ 0:

Z (u, e2,q) = (u · 2e2)%10q == 0

= p10 (u · 2
e2) ≥ q

= min(p2 (u) + p2 (2
e2),p5 (u)) ≥ q

= p2 (u) + e2 ≥ q AND p5 (u) ≥ q.

Due to e2 ≥ q (Section 3.1), and p2 (u) ≥ 0, the first term is
always true, so this simplifies to p5 (u) ≥ q, or equivalently
u%5q == 0.

For the case e2 < 0, it holds that

Z (u, e2,q) = (u · 5−e2)%10q == 0

= min(p2 (u),p5 (u) − e2) ≥ q

= p2 (u) ≥ q AND p5 (u) − e2 ≥ q

= p2 (u) ≥ q

= u%2q == 0.

□

Note that the number of trailing zeros is always limited
by the magnitude of (u,v,w). That means that the assumed
rounding mode for the correct parser only affects the output
for a tiny fraction of all possible floating point numbers.

278

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Ulf Adams

3.4 Putting It All Together

Taken together, Sections 3.1 to 3.3 allow us to speed up the
basic conversion routine. We add a preprocessing step to pre-
compute and store (⌊2k/5q⌋ + 1) and ⌊5−e2−q/2k ⌋ in lookup
tables for every possible value of e2.

Step 0. Precompute lookup tables for the given floating
point type.
Given a specific floating point type, we determine the

range of e2. We also determine appropriate constants B0 and
B1 of how many bits of (⌊2k/5q⌋ + 1) and ⌊5−e2−q/2k ⌋ need
to be stored.

For each possible value of e2 that is greater than or equal to

zero, we determineq asmax
(

0, ⌊e2 log10 2⌋ − 1
)

(Lemma 3.2),

and then use B0 to determine a legal value for k as (B0 +

⌊log2 5
q⌋) (Lemma 3.3). We compute (⌊2k/5q⌋ + 1) using

arbitrary precision arithmetic Ð its result has no more than
B0 bits Ð and store it in a lookup table TABLE_GTE indexed
by q.
For each possible value of e2 that is less than zero, we

determine q as max
(

0, ⌊−e2 log5 2⌋ − 1
)

(Lemma 3.2), and

then use B1 to determine a legal value for k as (⌈log2 5
q⌉ −

B1) (Lemma 3.4). We compute ⌊5−e2−q/2k ⌋ using arbitrary
precision arithmetic Ð this result has no more than B1 bits Ð
and store it in a lookup table TABLE_LT indexed by −e2 − q.

Using these lookup tables, we can now replace steps 3 and
4 with the more efficient steps 3’ and 4’.

Step 3’. Convert to a decimal power base and simultane-
ously remove most digits.
Like before, we compute q and use one of the constants

B0 and B1 to determine a legal value for k . Then, we look
up the correct factor from the corresponding lookup table.
Finally, we determine whether all removed digits were zeros
(Lemma 3.6).

Case e2 ≥ 0:

q = max
(

0, ⌊e2 log10 2⌋ − 1
)

k = B0 + ⌊log2 5
q⌋

(aq ,bq , cq) = ⌊((u,v,w) · TABLE_GTE[q])/2−e2+q+k ⌋

(za , zb , zc) = (u%5q == 0,v%5q−1 == 0,w%5q == 0)

Depending on the underlying machine and floating point
type, the multiplication and shift operations may not fit into
a native integer type, but can always be decomposed into
a small, constant number of multiplications, additions, and
shift operations.
Case e2 < 0:

q = max
(

0, ⌊−e2 log5 2⌋ − 1
)

k = ⌈log2 5
q⌉ − B1

(aq ,bq , cq) = ⌊((u,v,w) · TABLE_LT[−e2 − q])/2
q−k ⌋

(za , zb , zc) = (u%2q == 0,v%2q−1 == 0,w%2q == 0)

Step 4’. Find the shortest, correctly-rounded decimal rep-
resentation in the interval.
We use the results from the previous step to run the

compute_shortest algorithm from Section 2.3 to comple-
tion. We first determine whether the smaller and larger
halfway points may be output, resulting in the two flags
accept_smaller and accept_larдer . For example, for the
round-even rounding mode, we use

accept_smaller = accept_larдer = (m%2 == 0).

We then compute

(do , eo) = (0,q) + compute_shortest(

aq ,bq , cq ,

accept_smaller AND za ,

accept_larдer OR NOT zc).

We also need to pass in zb to be used as all_b_zero and
perform tiebreaking, which require changing the signature
of compute_shortest , and are omitted here for brevity.

Theorem 3.7. The given algorithm terminates, and generates

correct output.

Proof. Follows directly from Lemmas 2.1ś3.6. □

4 Performance Evaluation

We implemented four versions of Ryū, covering 32- and
64-bit floating point numbers each with a C and a Java imple-
mentation. We then experimentally compared our C imple-
mentations against what we believe to be an implementation
of Grisu3 [6] that is publicly available on GitHub. We also
compared our Java implementation against the implemen-
tations by Jaffer [10] and the OpenJDK. Our implementa-
tion performs correct rounding as described in Section 2.4;
leaving out those modifications further improves the perfor-
mance.

We generated a sequence of 32- and 64-bit values using the
Mersenne Twister random number generator with a fixed
initial seed and interpreted those as floating point numbers.
We then ran each algorithm for 1,000 iterations, measured the
time, divided by 1,000, and removed outliers. We performed
all experiments on an Intel(R) Core(TM) i7-4770K CPU at
3.50GHz running Ubuntu Linux 17.10.We used clang 3.9 with
the -O2 flag for C compilation and tested Java performance
with OpenJDK 1.8.0_131.

Figure 5 shows our experimental results. All subfigures
exhibit translational symmetry because the sign bit is the
highest bit in the binary floating point representation and
the algorithms all treat negative and positive numbers alike.

Grisu3 has several outliers, not shown in the graphs, which
correspond to cases where it has to fall back to a slower
arbitrary-precision implementation. The C implementation
of Ryū has better performance than Grisu3 and is also less
volatile. On average, Ryū is roughly three times faster than
Grisu3 for 32-bit and 64-bit floating point numbers.

279

Ryū: Fast Float-to-String Conversion PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

(a) 32-bit C implementation, Ryū vs. Grisu3 (b) 64-bit C implementation, Ryū vs. Grisu3

(c) 32-bit Java implementation, Ryū vs. OpenJDK (d) 64-bit Java implementation, Ryū vs. Jaffer vs. OpenJDK

Figure 5. Figures (a) and (b) show the experimental performance results for our C implementation of Ryū compared to (a)
Grisu3 on 32-bit floating point numbers, (b) Grisu3 on 64-bit floating point numbers. Figures (c) and (d) show the results for
our Java implementation compared to (c) OpenJDK on 32-bit floating point numbers, and (d) OpenJDK and Jaffer’s algorithm
on 64-bit floating point numbers. Each point plots the time in nanoseconds of a single value over the value of the binary
representation of a randomly generated floating point number. Some points are outside the plotted range.

The Java implementation of Ryū is slightly slower than the
C implementation. For the C implementation, we were care-
ful to avoid memory allocation in the inner loop. The Java
implementations all allocate memory for the result and then
call the java.lang.String constructor, which defensively
performs a copy of the data to guarantee immutability. These
two operations are likely responsible for the performance
difference and higher volatility of the Java implementation.

The 32-bit implementation in OpenJDK uses an extensive
case distinction and fixed-precision specializations for each
case, which causes the stair shape in Figure 5(c). Both Open-
JDK and Jaffer use an arbitrary precision library to perform
computations involving numbers that grow with the floating
point exponent of the input, which causes the butterfly shape
in Figure 5(d).

5 Related Work

The first radix conversion algorithms were described hun-
dreds of years ago (see Knuth [12] for a summary). Samelson

and Bauer [14] may have been the first to discuss floating
point conversion.
More recently, Coonen [4, 5] provided a very brief de-

scription of an algorithm for binary to decimal conversion.
It does not attempt to return the shortest possible string,
and it seems to require extended floating point types, i.e.,
floating point types with higher precision than the value
to be converted. Coonen also discusses strategies to reduce
the size of the lookup tables of powers of ten needed for his
algorithm.
Steele and White [15] describe an algorithm to generate

digits from left to right. Given a floating point number f , find
the smallest integer k such that f ≤ 10k . Scale f by 1/10k

to obtain a number between 0 and 1. Repeatedly multiply
the number by 10, print the integer part of the value, and
keep the fractional part with each iteration printing one
decimal digit. They use an iteratively updated error bound
to determine when to stop printing. In the original form, this
algorithm requires arbitrary precision operations and does

280

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Ulf Adams

not handle all possible rounding modes. Some consider this
to be a generalization of Taranto’s algorithm [16].
Both Gay [7] and Burger and Dybvig [3] subsequently

described improved versions of this algorithm, still using ar-
bitrary precision arithmetic. Both describe faster algorithms
to estimate the smallest power of 10 that is larger than the
given number. Gay also found special cases in which it is
sufficient to use floating point arithmetic. Burger and Dybvig
introduced the concept of the smaller and larger halfway
points, which they use to guarantee the shortest output while
handling all possible rounding modes.
Jaffer [10] describes a simple algorithm and provides a

Java implementation. It uses arbitrary precision arithmetic
to compute the exact first few decimal digits of the output
and uses an iterative approach to determine the shortest
output by repeatedly converting the potential output back
to a binary floating point number and checking whether the
result is identical to the original floating point value.

We compared Jaffer’s algorithm with our Java implemen-
tation of Ryū on a sample of 1,000,000 values obtained from
an implementation of the Mersenne Twister using a fixed
seed. Our Java implementation follows the specification of
the Java Double.toString method and prints at least two
decimal digits, which sometimes leads to longer output than
Jaffer’s implementation Ð we ignored these cases. Other
than that, its output is shorter in 17 cases, all of which are
incorrect. It is longer in 142,163 cases, most of which are due
to a bug in the handling of negative floating point values.
Loitsch [13] introduced a family of algorithms that per-

form the float to string conversion using only integer op-
erations. The first variant, Grisu, always outputs 21 digits
and therefore does not maintain the minimum-length output
criterion. The third variant, Grisu3, does, but rejects some
inputs Ð according to the author approximately 0.5% of pos-
sible inputs Ð and has to fall back to a slower algorithm that
uses arbitrary precision arithmetic.
Grisu3 is similar to Ryū in that it computes the lower

and upper bounds to determine a legal range of decimal
representations. However, whereas Ryū uses simple integer
operations to obtain exact results directly, Grisu3 emulates
a higher-precision floating point type, detects if the exact
result is too close to the bounds, and falls back to a slower
implementation if so.
Andrysco et al. [2] describe Errol, another family of

fixed-width algorithms. Like Grisu, Errol emulates higher-
precision floating point operations and detects if these emu-
lated operations are insufficiently accurate to give an exact
result. Unlike Grisu, Errol uses pairs of 64-bit floating point
values rather than integers. It also uses a lookup table as a
fallback rather than a slower implementation. Nevertheless,
the final variant, Errol3, is slightly slower than Grisu3 in the
common case where no fallback is necessary.
The OpenJDK implements a conversion scheme that

branches depending on the exponent of the original floating

point value to improve performance. However, it is still sig-
nificantly slower than both the Grisu and Errol families of
algorithms.
We have discovered that the OpenJDK implementation

sometimes outputs numbers that are too long. We compared
the OpenJDK implementation with our Java implementation
of Ryū on the same pseudo-random sample of 1,000,000 val-
ues as above: its output is longer in 2,877 cases, all of which
are unnecessary additional digits.
We did not compare our implementation against the C

standard library function printf, as its specification does
not include the correctness criteria set forth by Steele and
White [15], and, accordingly, neither the glibc nor theMacOS
implementation does.

6 Summary

We described a new algorithm, Ryū, to convert binary float-
ing point numbers to decimal strings. We proved it correct
and provided benchmark results. We also provide an open
source implementation [1] for public scrutiny. The primary
reason for Ryū’s excellent performance is its simplicity: with
no special cases and significantly less code than Grisu3 or
Errol3, Ryū is easier to optimize for both humans and com-
pilers. For example, Ryū generates the final digits to print
as a single integer, and then uses the fastest existing integer
to string conversion code, whereas Grisu3 generates digits
one by one into an intermediate buffer and then copies them
into the final output buffer as a separate step.
The main disadvantage of Ryū is its reliance on lookup

tables. These are quite reasonable for the typical 32-bit and
64-bit floating point types but grow exponentially for larger
types. It is up to future work to determine whether it is
possible to reduce their size or even avoid them entirely.

Using Ryū’s predecessor, our basic conversion routine, we
have discovered that some of the competing implementations
produce output that is either too long or too short. Any
conversion routine that claims consistency with the criteria
set forth by Steele and White should compare outputs with
our basic conversion routine for at least a subset of numbers.
Given an existing arbitrary-precision arithmetic library, its
implementation is less than hundred lines of straightforward
Java code, which is much easier to inspect for errors than
the hundreds if not thousands of lines of high-performance
conversion code.

Finally, even though binary float to decimal string conver-
sion is the most common case, it would be interesting to see
if Ryū’s ideas also apply to other floating point conversion
problems.

Acknowledgments

I am indebted to my wife Sara Adams for affording me time
and space for this work, and for reviewing dozens of drafts.
Thanks also to Christian Rosenke and Tobias Werth.

281

Ryū: Fast Float-to-String Conversion PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

References
[1] Ulf Adams. 2018. ulfjack/ryu. (Feb. 2018). https://github.com/ulfjack/

ryu

[2] Marc Andrysco, Ranjit Jhala, and Sorin Lerner. 2016. Printing Floating-

point Numbers: A Faster, Always Correct Method. In Proceedings of

the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL ’16). ACM, New York, NY, USA, 555ś

567. https://doi.org/10.1145/2837614.2837654

[3] Robert G. Burger and R. Kent Dybvig. 1996. Printing Floating-point

Numbers Quickly and Accurately. In Proceedings of the ACM SIGPLAN

1996 Conference on Programming Language Design and Implementation

(PLDI ’96). ACM, New York, NY, USA, 108ś116. https://doi.org/10.

1145/231379.231397

[4] Jerome Toby Coonen. 1980. An Implementation Guide to a Proposed

Standard for Floating Point Arithmetic. Computer 13, 1 (Jan. 1980),

68ś79. https://doi.org/10.1109/MC.1980.1653344 See errata in [5].

[5] Jerome Toby Coonen. 1981. Errata: An Implementation Guide to a

Proposed Standard for Floating Point Arithmetic. Computer 14, 3

(March 1981), 62. https://doi.org/10.1109/C-M.1981.220378 See also

[4].

[6] Florian Loitsch et al. 2017. google/double-conversion. (Septem-

ber 2017). https://github.com/google/double-conversion commit

fe9b384793c4e79bd32133dc9053f27b75a5eeae.

[7] David M. Gay. 1990. Correctly Rounded Binary-Decimal and Decimal-

Binary Conversions. Technical Report. AT&T Bell Laboratories. Nu-

merical Analysis Manuscript 90-10.

[8] Torbjörn Granlund and Peter L. Montgomery. 1994. Division by

Invariant Integers Using Multiplication. In Proceedings of the ACM

SIGPLAN 1994 Conference on Programming Language Design and Im-

plementation (PLDI ’94). ACM, New York, NY, USA, 61ś72. https:

//doi.org/10.1145/773473.178249

[9] IEEE Computer Society. Microprocessor Standards Committee and

Institute of Electrical and Electronics Engineers and IEEE-SA Standards

Board. 2008. 754-2008 - IEEE Standard for Floating-Point Arithmetic.

Institute of Electrical and Electronics Engineers (IEEE), New York.

https://doi.org/10.1109/IEEESTD.2008.4610935

[10] Aubrey Jaffer. 2013. Easy Accurate Reading and Writing of Floating-

Point Numbers. (October 2013). https://arxiv.org/abs/1310.8121v6

Updated January 2015.

[11] Donald Ervin Knuth. 1997. The Art of Computer Programming (3rd

ed.). Vol. I: Fundamental Algorithms. Addison-Wesley, Boston, Mas-

sachusetts, United States, Chapter 1.2.1 Mathematical Induction, p.

13ś17.

[12] Donald Ervin Knuth. 1997. The Art of Computer Programming (3rd

ed.). Vol. II: Seminumerical Algorithms. Addison-Wesley, Boston, Mas-

sachusetts, United States, Chapter 4.4 Radix Conversion, p. 326.

[13] Florian Loitsch. 2010. Printing Floating-Point Numbers Quickly and

Accurately with Integers. In Proceedings of the ACM SIGPLAN 2010

Conference on Programming Language Design and Implementation, PLDI

2010. ACM, New York, NY, USA, 233ś243. https://doi.org/10.1145/

1806596.1806623

[14] Klaus Samelson and Friedrich L. Bauer. 1953. Optimale Rechenge-

nauigkeit bei Rechenanlagen mit gleitendem Komma. Zeitschrift für

angewandte Mathematik und Physik (ZAMP) 4, 4 (Jul 1953), 312ś316.

https://doi.org/10.1007/BF02074638

[15] Guy L. Steele, Jr. and Jon L. White. 1990. How to Print Floating-point

Numbers Accurately. In Proceedings of the ACM SIGPLAN 1990 Confer-

ence on Programming Language Design and Implementation (PLDI ’90).

ACM, New York, NY, USA, 112ś126. https://doi.org/10.1145/93542.

93559

[16] Donald Taranto. 1959. Binary Conversion, with Fixed Decimal Pre-

cision, of a Decimal Fraction. Commun. ACM 2, 7 (July 1959), p. 27.

https://doi.org/10.1145/368370.368376

282

https://github.com/ulfjack/ryu
https://github.com/ulfjack/ryu
https://doi.org/10.1145/2837614.2837654
https://doi.org/10.1145/231379.231397
https://doi.org/10.1145/231379.231397
https://doi.org/10.1109/MC.1980.1653344
https://doi.org/10.1109/C-M.1981.220378
https://github.com/google/double-conversion
https://doi.org/10.1145/773473.178249
https://doi.org/10.1145/773473.178249
https://doi.org/10.1109/IEEESTD.2008.4610935
https://arxiv.org/abs/1310.8121v6
https://doi.org/10.1145/1806596.1806623
https://doi.org/10.1145/1806596.1806623
https://doi.org/10.1007/BF02074638
https://doi.org/10.1145/93542.93559
https://doi.org/10.1145/93542.93559
https://doi.org/10.1145/368370.368376

	Abstract
	1 Introduction
	2 Basic Conversion Routine
	2.1 IEEE Floating Point Types
	2.2 Conversion Process
	2.3 Finding the Shortest Decimal Representation by Repeated Division
	2.4 Finding the Correctly-Rounded Decimal Representation

	3 Ryū
	3.1 Maximum Number of Iterations q That Can Be Safely Combined
	3.2 Computing "4262304 (a,b,c)/10q "5263305
	3.3 Trailing Zeros of (a,b,c)
	3.4 Putting It All Together

	4 Performance Evaluation
	5 Related Work
	6 Summary
	Acknowledgments
	References

