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ABSTRACT

This note discusses the main issues in performing correctly rounded
decimal-to-binary and binary-to-decimal conversions. It reviews recent
work by Clinger and by Steele and White on these conversions and
describes some efficiency enhancements. Computational experience with
several kinds of arithmetic suggests that the average computational cost
for correct rounding can be small for typical conversions. Source for
conversion routines that support this claim is available from netlib.

1. Introduction

On computers that use non-decimal floating-point arithmetic, occasion often arises
to convert a number from decimal form to the internal floating-point form or vice versa,
i.e., to find an internal floating-point number that is near to a given decimal number or to
find a decimal number that is near to a given internal floating-point number. Ideally such
a conversion would be correctly rounded in a specified sense, e.g., would yield the
nearest number expressible with at most a prescribed number of digits of the appropriate
kind. It is of interest to ask how much correctly rounded conversions cost computation-
ally. Here we examine this question for some commonly used arithmetics: IEEE binary
[1], IBM-mainframe, and VAX. For IEEE arithmetic, we assume that the specified
rounding sense is the IEEE round-nearest mode, i.e., unbiased rounding, which yields a
nearest floating-point number and, in case there are two nearest numbers, yields the one
whose trailing digit is even. For the other arithmetics, we assume biased rounding, which
yields the floating-point number of larger magnitude when there are two nearest
floating-point numbers. (Note that IBM arithmetic is not ordinarily rounded, but that, as
illustrated in Appendix A, extended-precision instructions can be used to compute
floating-point products and quotients rounded in this way.)

Recently, Clinger [3] described a scheme that relies on IEEE double-extended arith-
metic to perform correctly rounded decimal-to-binary conversion. In the next section we
show how to modify Clinger’s method so that only double-precision arithmetic is needed.
Steele and White [12] have recently described a method for binary-to-decimal conversion
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that yields the shortest decimal number that, when correctly rounded back to the same
binary floating-point precision, results in the original number; they also describe variants
that yield correctly rounded decimal strings having at most a prescribed number of digits
or a prescribed number of digits after the decimal point (fixed-point notation). In Section
3 we explain several ways to speed up such calculations. Section 4 describes some com-
putational experience, and §5 offers concluding remarks. The rest of this section intro-
duces some notation and assumptions. For other work on conversions, see Coonen’s
thesis [4] and the works cited in [3, 4, 12].

Since signs are easy to treat, we restrict the discussion to conversion of nonnegative
numbers.

We assume that nonnegative normalized internal floating-point numbers have the
form

(1) b =
i = 0
Σ

p − 1
b i × βe − i ,

where the floating-point arithmetic base β and the number p of base β digits are fixed
positive integers, e is an integer that satisfies

(2) e min ≤ e ≤ e max

for prescribed integers e min and e max, the digits b i are integers with 0 ≤ b i < β, and
b 0 ≠ 0. For IEEE arithmetic, it is also necessary to consider denormalized numbers, in
which e = e min, b 0 = 0, and b ≠ 0.

Corresponding to (1), we consider nonnegative decimal numbers of the form

(3) d =
i = 0
Σ

n − 1
d i ×10k − i ,

where n is a positive integer and k is an integer that may be positive, negative, or zero.
We assume that β is not commensurable with 10 in the sense of Matula [10], i.e., that β is
not a power of 10, since conversions are easy if β is a power of 10.

A floating-point integer is an integer that can be expressed in the form (1).

Suppose b is the nearest value of the form (1) to d when the bounds (2) are ignored.
If e > e max, then d is said to overflow, and if e < e min, then d is said to underflow.
Under IEEE arithmetic, we allow gradual underflow: if

βe min − βe min − p > d ≥ βe min − p + 1 /2 ,

we consider the desired approximation b to d to be the denormalized number nearest d.

Suppose an (exact) arithmetic operation yields a result r with
βe min − βe min − p + 1 < r < βe max + 1 − βe max − p + 1 and that r is not a floating-point
number, i.e., cannot be represented in the form (1). Then there are two adjacent
floating-point numbers, r_ and r

_
, with r_ < r < r

_
. By a rounded floating-point operation,

we mean a calculation that yields r_ if r − r_ < r
_

− r, r
_

if r
_

− r < r − r_, and, if
r − r_ = r

_
− r, r_ if we are using IEEE arithmetic and the least-significant digit of r_ is
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even and r
_

otherwise. With IEEE and VAX arithmetic, the hardware arithmetic opera-
tions are rounded floating-point operations in the sense just defined. With IBM arith-
metic, one can use extended-precision instructions, such as those shown in Appendix A,
to compute rounded floating-point products and quotients.

2. Decimal-to-Binary Conversion

Suppose we wish to find the nearest floating-point number b to a given decimal
number d. Initially we assume that

(4) βe min − βe min − p + 1 ≤ d ≤ βe max + 1 − βe max − p + 1 ,

so that over- and underflow are not an issue. As Clinger [3] notes, if n is small enough
and k is near enough to zero, then d can be expressed as the product or ratio of the

floating-point integers 10k − n + 1 and
i = 1
Σ
n

d i − 1 ×10n − i . Thus we can compute the

correctly rounded b with one rounded floating-point operation. Another case (not noted
by Clinger) where a single rounded floating-point operation suffices is that where k is
large enough that 10k is not a floating-point integer, but there is a positive integer j < k

such that both 10k − j and 10 j .


i = 1

Σ
n

d i − 1 ×10n − i




are floating-point integers. Fortunately,

these cases are the typical ones in most applications.

If the above cases do not obtain, then we can use a combination of floating-point
arithmetic and arithmetic on large integers to compute b. A reasonable approach is to
compute a series of approximations, say b ( 1 ) , b ( 2 ) , . . . , b (m) , with

b ( j) =
i = 0
Σ

p − 1
bi

( j) × βe ( j) − i

and b (m) = b. Clinger suggests using IEEE binary double-extended arithmetic to com-
pute b ( 1 ) ; he describes a procedure that changes b ( j) by one unit in the last place (i.e.,
that adds or subtracts βe ( j) − p + 1 to or from b ( j)), and he argues that his choice of b ( 1 ) is
such that at most one iteration of the correction procedure is needed, i.e., m ≤ 2. Unfor-
tunately, many systems that have IEEE arithmetic do not have hardware support for IEEE
double-extended arithmetic, and many other systems have non-IEEE arithmetic. How-
ever, it is possible to use the native floating-point arithmetic together with high-precision
integer calculations in a correction procedure that yields b (m) = b with m ≤ 3, and that
usually has m ≤ 2.

It is easy to use floating-point arithmetic to compute an initial guess b ( 1 ) with

(5) b − b ( 1 ) < cβe ( 1 ) − p + 1

for a small constant c. For example, §4 describes an easy way to achieve c = 6. 01 on
machines with IEEE, VAX, or IBM arithmetic; 6.01 is an upper bound on
( 1 + β1 − p )6 − 1 (as in the roundoff analysis in §20 of [7]).
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Let b_ < b and b
_

> b be the floating-point numbers adjacent to b. For b to be the
desired approximation to d, it is necessary and sufficient that b_ < d < b

_
and

b − d ≤ min {d − b_ , b
_

− d}, with b chosen properly if equality holds (i.e., b p − 1

even for unbiased rounding and b − d = d − b_ for biased rounding). Thus for
b ( j) = b, it is necessary that

(6) d − b ( j) ≤ 1⁄2 βe ( j) − p + 1 .

In the special case that b = βe , it is also necessary that

(7) d − b ( j) ≥ − 1⁄2 βe ( j) − p .

Condition (6) is easily reduced to a test that only requires multiplying and subtracting
large integers; it is equivalent to

(8) 2M(d − b ( j) ) ≤ Mβe ( j) − p + 1 ,

where M is chosen so that 2Md, 2Mb ( j) , and Mβe ( j) − p + 1 are all integers. For example,
M : = max { 1 , βp − e ( j) − 1 }.max { 10n − k − 1 , 1 } suffices, though, as illustrated in §4,
smaller choices of M are often possible. Suppose (8) fails to hold, and consider

δ̃
( j)

: = 1⁄2 ×[ 2M(d − b ( j) ) ]/[Mβe ( j) − p + 1 ] ;

note that b ( j) + δ̃
( j)

βe ( j) − p + 1 = d, so δ̃
( j)

is the number of units in the last place of
b ( j) by which we would like to perturb b ( j) . With floating-point arithmetic that starts by
obtaining floating-point approximations to the integers 2M(d − b ( j) ) and Mβe ( j) − p + 1,
we can compute an excellent approximation δ( j) to δ̃

( j)
and then a new approximation

b ( j + 1 ) to b, i.e., b ( j + 1 ) = f l(b ( j) + δ( j) βe ( j) − p + 1 ), where f l(.) denotes an approxi-
mation to (.) computed with floating-point arithmetic. If e ( j + 1 ) = e (the correct
exponent for the desired floating-point approximation b) and either b ( j) is not a power of
β or δ( j) > 0, then b ( j + 1 ) will differ from b by at most one unit in the last place, and if
δ( j) differs from the nearest odd multiple of 1⁄2 by more than a modest multiple of β1 − p ,
then b ( j + 1 ) = b.

It could happen that b ( j + 1 ) = b ( j) ≠ b if b differs from b ( j) by ± βe ( j) − p + 1 and d
differs from b ( j) by very nearly 1⁄2 βe ( j) − p + 1. To preclude the infinite loop that might
otherwise result, it suffices to replace δ( j) by sign (δ( j) ) max {δ( j), βe ( j) − p + 1 }. Simi-
larly, if b ( j) is a power of β and b ( j) − d is very close to 1⁄2 βe ( j) − p , it could happen
that b ( j + 1 ) = b ( j) unless δ( j) is suitably modified; in this special case (when b ( j) is a
power of β and δ( j) < 0), it suffices to replace δ( j) by − max {δ( j), βe ( j) − p }.

In the worst case, the procedure just described yields b (m) = b with m = 3. This
could happen if b ( 2 ) − b = βe − p + 1, i.e., b ( 2 ) differs from b by one unit in the last
place of b. Otherwise the procedure yields b = b ( 1 ) or b = b ( 2 ) . (Whenever δ( j) is
modified as described in the previous paragraph, b ( j + 1 ) = b.)

Consider IEEE arithmetic for a moment and suppose the left-hand side of (4) is
relaxed to βe min − p + 1. To handle denormalized numbers, it suffices to adjust the
exponents of β in (6), (7), and (8) appropriately. Specifically, if L j is the least integer
such that bL j

( j) ≠ 0, then we replace p by (p − L j ) in (6), (7), and (8).
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Correctly detecting over- and underflow requires some extra tests. For example, it
is necessary to avoid over- and underflow in the computation of b ( 1 ) . The implementa-
tion discussed in §4 does this by testing n and k in (3) to screen out obvious over- and
underflows and checking (and, if necessary, temporarily modifying) the exponent of the
intermediate result before the final multiplication or division; in borderline cases, it sets
b ( 1 ) to the smallest or largest positive floating-point number, as appropriate. It similarly
avoids over- and underflow in computing b ( j + 1 ) from b ( j) , detecting over- or underflow
if b ( j) is the largest or smallest positive floating-point number and b ( j + 1 ) would be
larger or smaller, respectively, than b ( j) .

3. Binary-to-Decimal Conversion

Binary-to-decimal conversion is simpler than decimal-to-binary conversion in the
sense that over- and underflow are not issues. A straightforward approach that only
involves arithmetic on integers (sometimes very large integers) is to maintain an invari-
ant described by Steele and White [12]. Let b denote the floating-point number (1) to be
converted. First we determine integers b ( 0 ) ≥ 1, S ≥ 1 and k such that

(9a) b = (b ( 0 ) / S) ×10k

and

(9b) 1 ≤ b ( 0 ) / S < 10 .

Then we compute digits d j and residuals b ( j) to maintain

(10) b = (b ( j) / S) ×10k − j +
i = 0
Σ

j − 1
d i ×10k − i

by setting

(11) d j : = b ( j) / S

and

(12) b ( j + 1 ) : = 10×(b ( j) − d j ×S) = 10×(b ( j) mod S) ,

where x denotes the greatest integer ≤ x.

Steele and White [12] suggest an iterative procedure that uses integer arithmetic to
compute the k for which (9) holds, but it is generally more efficient to use floating-point
arithmetic to compute k̂ with k ≤ k̂ ≤ k + 1 and, if necessary, to then use integer arith-
metic to compute k from k̂. For the floating-point arithmetics considered here, it is
straightforward to compute an integer and a floating-point number x such that
1 ≤ x < 2 and b = x×2 . Now

k = log 10 (b)  =  . log 10 ( 2 ) + log 10 (x) ,

log 10 (x) ≤ log 10 ( 1. 5 ) + [x − 1. 5 ] /( 1. 5.log ( 10 ) ) ,

and, for the arithmetics considered here,   ≤ 1077, so
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k ≤ k̂ : = f l( ×0. 301029995663981 + (x − 1. 5 ) ×0. 289529654602168

+ 0. 1760912590558 ) ,

where we have approximated the constant term log 10 ( 1. 5 ) = 0. 176091259055681242...
by 0.1760912590558 to ensure k̂ ≥ k; it is easy to see from Taylor’s theorem that
k̂ ≤ k + 1.

Using high-precision integer arithmetic in (11) and (12), we can compute an arbi-
trarily close decimal approximation d to b. Often an approximation of only a few signifi-
cant decimal places or a few places past the decimal point is desired. The simplest
approach is to generate the desired number of digits and then to round the final digit
d n − 1 appropriately. Of course, this rounding sometimes involves propagating carries,
i.e., changing d i for some values of i < n − 1. An alternative advocated by Steele and
White [12] is to use a stopping test that assures that we compute each d i correctly. This
is convenient for the co-routine structure described in [12], and sometimes it saves work,
but other times it costs more work, because it requires computing with larger integers.

Suppose we have chosen n, and we wish to compute the nearest decimal number of
the form (3) to b (with ties broken appropriately). From (10), if

(13) b ( j) mod S < 5×S×10 j − n ,

then (11) delivers the desired d j and d i = 0 for j < i < n. Similarly, if

(14) b ( j) mod S > S×( 1 − 5×10 j − n ) ,

then d j from (11) must be increased by one and again d i = 0 for j < i < n. It can hap-
pen that j = 0 and (11) gives d 0 = 9, in which case we must increment k and set
d 0 : = 1. The computation of k in [12] precludes this special case, but it is more effi-
cient to compute and correct k as just described. Note that by scaling b ( 0 ) and S by a
nonnegative integral power of 10, we can arrange that tests (13) and (14) only involve
integer arithmetic.

If the left- and right-hand sides of (13) or (14) are equal, then it is necessary to use
the appropriate tie-breaking rule to decide whether and how to stop generating digits.

As argued in [12], there are times when it is desirable to compute the shortest
decimal string that correctly rounds to a given floating-point number b. For example,
this is the ‘‘right’’ way to represent numbers as set elements in the AMPL modeling
language [8], which was a prime motivation for the present work. For d to correctly
round to b, it suffices that

(15) 1⁄2 (b_ + b) < d < 1⁄2 (b + b
_

) ,

where, as before, b_ and b
_

are the floating-point numbers adjacent to b, and [12] tells how
to compute the shortest d that satisfies (15). This involves stopping tests similar to (13)
and (14). By taking account of whether d will to be converted to binary by biased or
unbiased rounding, we can allow one of the strict inequalities in (15) to be an equality,
which can lead to a shorter d. For example, with binary double-precision IEEE arith-
metic, 1023 rounds to a binary floating-point number which (15) would render as
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9. 999999999999999×1022, but taking the unbiased rounding of IEEE arithmetic into
account, we can render this number as 1023. The implementation described in §4 will
honor either (15) or a relaxed version that allows equalities in (15) when the appropriate
rounding rule will yield b.

In general it is necessary to use integer arithmetic of high precision in (11) and (12),
but often it is possible — and faster — to get by with floating-point arithmetic. In partic-
ular, if b is a floating-point integer with

(16) log 10 (b)  < log 10 (βp ) − 1 ,

then S : = 10 log 10 (b) , i .S, 1 ≤ i ≤ 9, and all the b ( j) are floating-point integers, and
there is no roundoff error when (11) and (12) are carried out straightforwardly in
floating-point arithmetic.

Another case in which floating-point arithmetic often suffices is that where the
number n of significant decimal digits required is sufficiently small, say

(17) n < log 10 (βp − 1 ) − 1

(e.g., n ≤ 14 for binary double-precision IEEE arithmetic). In that case, it is often
worthwhile to compute

(18) b̃
( 0 )

: = f l(b .10 − k ) ,

and, for j = 0 , 1 , . . . , n − 1,

(19) d̃ j : = b̃
( j)



and

(20) b̃
( j + 1 )

= f l( 10×[ b̃
( j)

− d̃ j ] ) .

If (18) involves µ floating-point operations, then

(21a) b = ( b̃
( 0 )

+ η 0 ) ×10k

with

(21b) η 0 < [ ( 1 − β1 − p ) − µ − 1 ] b̃
( 0 )

.

(In fact, for rounded arithmetic, η 0 < ( 1 − 1⁄2 β1 − p ) − µ − 1.) Calculation (20) is tan-
tamount to a fixed-point computation; the subtraction is always exact, and the multiplica-
tion, over all iterations of (20), can lose a cumulative total of at most 3 bits. Indeed, in
VAX or binary IEEE arithmetic (β = 2),

(22a) b̃
( 0 )

= ( b̃
( j)

+ η̃ j ) ×10 − j +
i = 0
Σ

j − 1
d̃ i ×10 − i ,

with

(22b) η̃ j < 7× β1 − p ×10 j

(and η̃ 0 = 0); in IBM arithmetic (β = 16), (22a) holds with η̃ j ≡ 0. (The right-hand
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side of (22b) comes from bounding η̃ j by the error that would be introduced by ignoring
the three least significant bits of b ( 0 ) — with these bits set to 0, (20) would introduce no
further rounding errors.) Combining (21) and (22), we have

b = ( b̃
( j)

+ η j ) ×10k − j +
i = 0
Σ

j − 1
d̃ i ×10k − i ,

with

η j = 10 j × η 0 + η̃ j < 
[ ( 1 − β1 − p ) − µ − 1 ] b̃

( 0 )
+ 7× β1 − p

×10 j ;

with (18) carried out as in §4, ( 1 − β1 − p ) − µ − 1 < (µ + 1 ) × β1 − p and

(23) η j < η
_

j : = f l 
( [µ + 1 ] b̃

( 0 )
+ 7 ) × β1 − p ×10 j

 .

If

(24a) b̃
(n)

< 5 − η
_

n ,

then (3) with d i = d̃ i is the desired decimal approximation to b; otherwise, if

(24b) b̃
(n)

> 5 + η
_

n ,

then we obtain (3) by incrementing d̃ n − 1 and propagating carries if necessary; otherwise
(18–20) and (23) do not conclusively yield the desired rounded decimal approximation d,
and we must resort to using high-precision integer arithmetic in (11) and (12).

As in [12], we can use an alternative to tests (24) that involves more computation
per digit, but that may save time if some of the trailing digits d i in (3) are zero. (Note
that with (24) there is no need to compute η

_
j for j < n.) The alternative works as fol-

lows. We compute

(25a) η̂ j : = f l 
[ 5×10 − n − ( (µ + 1 ) b̃

( 0 )
+ 7 ) × β1 − p ] ×10 j



and test whether

(25b) b̃
( j)

− d̃ j < η̂ j ,

in which case d i = d̃ i for i ≤ j and d i = 0 for j < i < n. If (25b) is not satisfied, we
test whether

(25c) f l( 1 − [ b̃
( j)

− d̃ j ] ) < η̂ j ,

in which case d j = d̃ j + 1, d i = d̃ i for i < j, and again d i = 0 for j < i < n. Note
that the quantity b̃

( j)
− d̃ j that appears in (25) is part of (20), and that (25) with

j = n − 1 reduces to (24), since (24b) is equivalent to 10 − b̃
(n)

< 5 − η
_

n . Thus if
we reach j = n − 1 and neither (25b) nor (25c) holds, then again we must resort to using
high-precision integer arithmetic in (11) and (12).

On average, when (17) holds, i.e., n is not too large, it is probably most efficient
first to try (18), (19), and (20). If this fails or if n is too large (which includes the case
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where we wish (15) to hold), then it is reasonable to check whether b is a floating-point
integer and (16) holds, which means we can use floating-point arithmetic in (11) and
(12). Otherwise, resorting to high-precision integer arithmetic may be unavoidable. The
test (17) suggested above for n not being too large comes from requiring (23) to yield
η
_

n < 1 with [µ + 1 ] b̃
( 0 )

+ 7 approximated by 10.

4. Computational Experience

We have written functions, strtod and dtoa, that do the calculations described
in §2 and §3, respectively; strtod is designed to conform to the ANSI C standard [2]
(in "C" locale); dtoa has modes that correspond to fixed-point formatting (as in
Fortran’s Fw.d or printf’s %w.df format specifiers), to floating-point formatting (as
in Ew.d or %w.de), and to (15), i.e., to computing the shortest decimal string that
rounds to a given binary floating-point number b. Thus dtoa could be used inside the
ANSI C routines fprintf, printf, and sprintf, but it can also compute shortest
decimal strings as advocated by Steele and White [12]. The source code is compilable by
an ANSI C or C++ [6, 13] compiler, and, by defining appropriate preprocessor variables,
one can compile the functions so they are suitable for use with binary IEEE, conventional
IBM-mainframe, or VAX double-precision arithmetic. Source for the functions is avail-
able from netlib [5]; for details, send netlib@research.att.com the electronic-
mail message

send index from fp

For decimal-to-binary conversions, we obtain b ( 1 ) so that (5) holds with c = 6. 01
by using a mixture of integer and floating-point arithmetic to compute the integer

(26) f l


 i = 0

Σ
min { 17 , n − 1 }

d i ×10min { 17 , n − 1 } − i




with at most one rounding error, then multiplying or dividing (26) by the appropriate
power of 10, expressed as the product of factors from the set

{ 10i : 0 ≤ i ≤ 15 } ∪ { 10( 2 i ) : 4 ≤ i ≤ 8 } .

(For IEEE arithmetic, this involves at most 6 possibly inexact floating-point operations;
for IBM arithmetic, at most 4, and for VAX, at most 3.)

The choices of M in (8) and of S and b ( 0 ) in (9) deserve brief discussion. Since β is
a power of 2 for the arithmetics considered here, the computations involving M, S, and
b ( 0 ) entail multiplications by factors of the form 2κ and 5λ for nonnegative integers κ
and λ. By keeping separate track of κ and λ, strtod and dtoa often can arrange to
use smaller values of M, S, and b ( 0 ) than the most straightforward choices M : =
max { 1 , βp − e ( j) − 1 } × max { 10n − k − 1 , 1 } or S : = max { 1 , βp − e + 1 } × max { 1 , 10k }
would give.

Below are tables showing average microseconds for 10000 or 20000 repetitions of
various conversions on three machines:
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• pyxis is an SGI 4D/240S with 25MHz MIPS R3000 cpu chips, running IRIX Sys-
tem V Release 3.3.1, with binary IEEE arithmetic. Compilation is by the standard
vendor-supplied C compiler (cc -O).

• odin is an Amdahl 5890, running UNIX UTS System V Release 2.6b, with
IBM-mainframe floating-point arithmetic. On odin, when a single possibly inexact
floating-point operation suffices, strtod computes the relevant rounded product or
quotient using the assembly-coded routines whose source is shown in Appendix A. The
ANSI C routines were converted to old-style C by cfront version 2.1 (part of the
AT&T C++ translator), then compiled by the vendor-supplied C compiler (cc -O).

• pipe is a VAX 8550 running a 10th Edition UNIX system. Compilation was by
lcc, an experimental C compiler by Chris Fraser and Dave Hanson — see [9].

Tables 1 and 2 show approximate times for our strtod, based on §2, to do the
indicated decimal-to-binary conversions, and they show corresponding times for the
atof routine from the standard C library on the machine in question. The conversions
in Table 1 fall into the ‘‘typical’’ cases, in which strtod gets by with floating-point
arithmetic; in these cases, it takes roughly the same time as atof on odin and runs fas-
ter than atof on pyxis and pipe. (On the VAX, the ‘‘typical’’ cases include all d ≥ 1
with n ≤ 16 significant figures.) The conversions in Table 2 have so large or small an
exponent k or so many digits that strtod must resort to high-precision integer arith-
metic, which makes it take considerably longer than atof. It is easy to find examples
on all three machines where strtod returns the correctly rounded value and atof is
less accurate. (On pyxis, such examples seem to need at least 18 decimal digits.)

_ ___________________________________________________________
pyxis odin pipe

IEEE arith. IBM arith. VAX arith.
Input strtod atof strtod atof strtod atof

1.23 9 18 7 7 33 82
1.23e+20 11 15 8 8 38 70
1.23e–20 12 19 8 8 43 305
1.23456789 15 27 12 12 57 150
1.23456589e+20 16 24 12 13 63 85
1.23e+30 11 20 7 10 42 102_ ___________________________________________________________ 


























Table 1. Decimal-to-binary microseconds, ‘‘typical’’ cases.
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_ _________________________________________________________________
pyxis odin pipe

IEEE arith. IBM arith. VAX arith.
Input strtod atof strtod atof strtod atof

1.23e–30 101 20 80 10 380 413
1.23456789e–20 130 28 98 13 458 370
1.23456789e–30 134 28 95 15 552 493
1.234567890123456789 156 39 110 22 640 290_ _________________________________________________________________ 




















Table 2. Decimal-to-binary microseconds, hard cases.

Tables 3–8 show approximate times for dtoa, based on §3, to do the indicated
binary-to-decimal conversions, and they show corresponding times for the ecvt and
sprintf routines from the standard C library on the machine in question. The numbers
to be converted are the binary versions of the numbers in the Input column, as computed
by strtod. Columns 2 and 3 give times for dtoa computing n = 6 significant fig-
ures. The first six input numbers in Tables 3, 5, and 7 are such that dtoa gets by with
floating-point arithmetic; the seventh allows use of floating-point arithmetic in (11) and
(12). The input numbers in Tables 4, 6, and 8 are chosen to force computation with
high-precision integers. The computations in column 2 use a mode that may need to pro-
pagate carries when rounding to n significant figures, whereas those in column 3 use the
approach advocated by Steele and White [12] of avoiding such carry propagations at the
cost of extra computation. Column 4 shows times for computing the shortest decimal
string that correctly rounds to the input binary floating-point number b. This generally
requires computing with large integers, unless b is a floating-point integer that is not too
large, such as the last input number in Tables 3, 5, and 7. Column 5 shows the time taken
for the C library routine ecvt to compute 6 significant figures for the given input
number, and column 6 shows the time taken for sprintf("%g") to do this computa-
tion. The dtoa times are generally longer than those for ecvt but shorter than those
for sprintf (which obviously has extra overhead); but dtoa is more accurate than
ecvt or sprintf on all three machines.
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_ _____________________________________________________________
dtoa, n = 6 dtoa

carries no n from
Input possible carries (15) ecvt sprintf

1.23 31 29 109 21 77
1.23e+20 33 31 137 25 71
1.23e–20 33 31 195 26 77
1.23456789 30 37 261 17 78
1.23456589e+20 32 38 285 22 85
1.23456789e–20 32 39 415 22 76
1234565 47 53 36 26 68_ _____________________________________________________________ 




























Table 3. Binary-to-decimal microseconds on pyxis (binary IEEE arithmetic),
‘‘typical’’ cases for n = 6.

_ ___________________________________________________________
dtoa, n = 6 dtoa

carries no n from
Input possible carries (15) ecvt sprintf

1.234565 131 268 210 17 76
1.234565e+20 157 285 237 22 74
1.234565e–20 208 341 335 23 80_ ___________________________________________________________ 


















Table 4. Binary-to-decimal microseconds on pyxis (binary IEEE arithmetic),
hard cases for n = 6.

_ _____________________________________________________________
dtoa, n = 6 dtoa

carries no n from
Input possible carries (15) ecvt sprintf

1.23 23 20 87 10 39
1.23e+20 23 22 108 13 46
1.23e–20 23 22 136 13 41
1.23456789 20 25 203 9 38
1.23456589e+20 23 25 222 12 41
1.23456789e–20 22 25 298 13 42
1234565 32 33 23 14 37_ _____________________________________________________________ 




























Table 5. Binary-to-decimal microseconds on odin (IBM arithmetic),
‘‘typical’’ cases for n = 6.
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_ ___________________________________________________________
dtoa, n = 6 dtoa

carries no n from
Input possible carries (15) ecvt sprintf

1.234565 88 200 163 9 38
1.234565e+20 108 212 184 12 41
1.234565e–20 137 242 246 13 41_ ___________________________________________________________ 


















Table 6. Binary-to-decimal microseconds on odin (IBM arithmetic),
hard cases for n = 6.

_ _____________________________________________________________
dtoa, n = 6 dtoa

carries no n from
Input possible carries (15) ecvt sprintf

1.23 82 88 428 78 144
1.23e+20 105 98 518 294 168
1.23e–20 100 95 716 107 168
1.23456789 92 108 1024 80 152
1.23456589e+20 98 120 1109 291 174
1.23456789e–20 93 115 1565 112 181
1234565 162 177 125 108 149_ _____________________________________________________________ 




























Table 7. Binary-to-decimal microseconds on pipe (VAX arithmetic),
‘‘typical’’ cases for n = 6.

_ ___________________________________________________________
dtoa, n = 6 dtoa

carries no n from
Input possible carries (15) ecvt sprintf

1.234565 450 998 804 83 154
1.234565e+20 565 1092 907 288 173
1.234565e–20 737 1223 1273 111 176_ ___________________________________________________________ 


















Table 8. Binary-to-decimal microseconds on pipe (VAX arithmetic),
hard cases for n = 6.

5. Concluding Remarks

We have shown that it is possible to do binary-to-decimal and decimal-to-binary
conversions in ways that always yield the correctly rounded results, with little time
penalty in common cases.

In hard cases, we must resort to high-precision integer arithmetic. The conversion
functions (strtod and dtoa) described in §4 have machine-independent routines,
written in C, that carry out this arithmetic. Assembly-coded versions of these routines
might run significantly faster on some machines.
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Under IEEE arithmetic, strtod and dtoa could be modified to reset, then test
the ‘‘inexact’’ flag, and they could then avoid high-precision integer computations in
some further cases. The extent to which this would be worthwhile obviously depends on
the cost of resetting and testing the ‘‘inexact’’ flag and on the distribution of numbers
presented for conversion.

The Numeric C Extensions Group is drafting a ‘‘standard’’ in which correct or
nearly correct binary-to-decimal and decimal-to-binary conversions are required. Some
people have expressed concern about the cost of such a requirement; this note should
serve to demonstrate that the cost can be modest in common cases.

Of course, there are many situations where precise conversions are not needed and
where trading speed for accuracy is desirable. For these situations, it would be helpful to
have a library of alternate conversion routines that make a reasonable such trade. But the
principle of least surprise suggests that correctly rounded conversions should be the
default.
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Appendix A: Rounded Products and Quotients with IBM Extended Precision

The following assembly code, suitable for use on odin, defines functions
rnd_prod and rnd_quot that correspond to the ANSI C headers

double rnd_prod(double a, double b); /* rounded a*b */
double rnd_quot(double a, double b); /* rounded a/b */

These functions compute the rounded product or quotient required in strtod when the
result can be expressed as a single possibly inexact product or quotient.

entry rnd_prod
rnd_prod:

using rnd_prod,15
ld 0,0+64(13)
mxd 0,8+64(13)
lrdr 0,0
b 2(,14)
drop
entry rnd_quot

rnd_quot:
using rnd_quot,15
ld 0,0+64(13)
ldr 2,0
ld 4,8+64(13)
ddr 2,4
std 2,32(13)
mxdr 4,2
sdr 2,2
sxr 0,4
dd 0,8+64(13)
sdr 2,2
ld 4,32(13)
sdr 6,6
axr 0,4
lrdr 0,0
b 2(,14)
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